scholarly journals Resonance-based metamaterial in the shallow sub-wavelength regime: negative refractive index and nearly perfect absorption

Author(s):  
Thi Trang Pham ◽  
Hoang Tung Nguyen ◽  
Dac Tuyen Le ◽  
Ba Tuan Tong ◽  
Thi Giang Trinh ◽  
...  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Borivoje Milošević ◽  
Slobodan Obradović

The paper discusses one of the most popular fields in the optical research of materials that has undergone a remarkable transformation. The study of metamaterials gives birth to a whole new scientific field called „transformation optics“ which promises to greatly increase the potential of manufacturing of synthetic nano-optical materials whose structure is located within the sub-wavelengths. Interactions of electric and magnetic field waves with modules of sub-wavelength produce effects that are impossible to get in natural materials, such as negative refractive index, unlimited degree of inertia and so on. Their development has offered an exciting potential to design a completely new type of optical materials.


2005 ◽  
Vol 45 (4) ◽  
pp. 294-295 ◽  
Author(s):  
Aaron D. Scher ◽  
Christopher T. Rodenbeck ◽  
Kai Chang

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


2013 ◽  
Vol 30 (4) ◽  
pp. 1077 ◽  
Author(s):  
Alexander O. Korotkevich ◽  
Kathryn E. Rasmussen ◽  
Gregor Kovačič ◽  
Victor Roytburd ◽  
Andrei I. Maimistov ◽  
...  

2015 ◽  
Vol 184 ◽  
pp. 263-274 ◽  
Author(s):  
T. A. Anikushina ◽  
M. G. Gladush ◽  
A. A. Gorshelev ◽  
A. V. Naumov

We suggest a novel approach for spatially resolved probing of local fluctuations of the refractive index n in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence T1(n) of the effective radiative lifetime T1 of dye centres in solids on n due to the local-field effects. Detection of SM zero-phonon lines at low temperatures gives the values of the SM natural spectral linewidth (which is inversely proportional to T1) and makes it possible to reveal the distribution of the local n values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene. In particular, we show that the obtained distributions of lifetime limited spectral linewidths of terrylene molecules embedded into these matrices are due to the spatial fluctuations of the refractive index local values.


Sign in / Sign up

Export Citation Format

Share Document