Low-profile reflective polarization conversion metasurface with frequency selective characteristics

2019 ◽  
Vol 6 (8) ◽  
pp. 085807
Author(s):  
Zhaosong Liu ◽  
Ying Liu ◽  
Wenbo Zhang ◽  
Yongtao Jia
Author(s):  
Xiangkun Kong ◽  
Lingqi Kong ◽  
Shunliu Jiang ◽  
Xuemeng Wang ◽  
Yukun Zou ◽  
...  

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zain Ul Abidin ◽  
Qunsheng Cao ◽  
Gulab Shah ◽  
Zaheer Ahmed Dayo ◽  
Muhammad Ejaz

Abstract In this paper, a miniaturized bandstop frequency selective surface (FSS) with high angular stability is presented. Each FSS element consists of four sets each consisting eight octagonal concentric interconnected loops. The four sets are connected with each other through outermost octagonal loop. The unit size is miniaturized to 0.066 λ0 at the resonant frequency of 1.79 GHz. The proposed configuration achieves excellent angular stability (only 0.025 GHz resonant frequency deviation is observed upto 83° oblique angles). The working mechanism of FSS is explained with the help of equivalent circuit model (ECM), electric field distribution, and corresponding surface current distribution. A prototype of the designed bandstop FSS is fabricated to verify the simulated frequency response. The experimental results are consistent with the simulation results. Simple geometry, low profile, high angular stability, and compact cell size are prominent features of the proposed structure.


2009 ◽  
Vol 57 (2) ◽  
pp. 460-466 ◽  
Author(s):  
Nader Behdad ◽  
Mudar Al-Joumayly ◽  
Mohsen Salehi

2020 ◽  
Vol 9 (2) ◽  
pp. 42-51
Author(s):  
C.-H. Tsai ◽  
J.-S. Sun ◽  
S.-J. Chung ◽  
J.-H. Tarng

In this paper, a new low-profile smart multiple-input multiple-output (MIMO) antenna system is presented for WiFi IEEE 802.11a/b/g/n/ac/ax applications. The proposed compact 2.4-GHz antenna system employs two beam-switching antenna cells for MIMO operation. Each antenna cell is composed of four reconfigurable frequency-selective reflectors (RFSRs) and a one-to-four switching feeding network. The RFSRs are constructed using a one-wavelength metal loop resonator, which functions as a radiating antenna or a wave reflector to reflect beams along a specific direction, as controlled by the switching network. The feeding switching network utilizes PIN diodes to adjust the phase and impedance required for changing the operational status of each RFSR. The overall dimensions of the antenna system, including the metallic ground, are 120 mm ´ 120 mm ´ 9.5 mm. Moreover, the measured operational bandwidth of the 2.4-GHz antenna is approximately 100 MHz, and the radiation efficiency of each directed beam is 40%–70%.


Sign in / Sign up

Export Citation Format

Share Document