Finite element simulation and experiment study of residual stress distribution of CVD Nb-C/SiC composites

2019 ◽  
Vol 6 (11) ◽  
pp. 115602
Author(s):  
Zhilong Tan ◽  
Ming Wen ◽  
Li Chen ◽  
Hongzhong Cai ◽  
Jialin Chen ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Xiaodong Xing ◽  
Xiaoming Duan ◽  
Xiaojing Sun ◽  
Haijun Gong ◽  
Liquan Wang ◽  
...  

Ultrasonic peening treatment (UPT) has been proved to be an effective way of improving residual stresses distribution in weld structures. Thus, it shows a great potential in stress modification for metal parts fabricated by additive manufacturing technology. In this paper, an investigation into the ultrasonic treatment process of AlSi10Mg specimens fabricated by selective laser melting (SLM) process was conducted by means of experimental and numerical simulation. The specimens were prepared using a SLM machine, and UPT on their top surface was carried out. The residual stresses were measured with an X-ray stress diffraction device before and after UPT. Meanwhile, a finite element simulation method for analyzing the influence of UPT on the residual stress field of specimens was proposed and validated by experiments. Firstly, the thermal mechanical coupling numerical simulation of the SLM process of the specimen was carried out in order to obtain the residual stress distribution in the as-fabricated specimen. Then, the transient dynamic finite element simulation model of the UPT process of the specimen was established, and the UPT effect analysis was implemented. In the UPT simulation, the residual stress was applied as a pre-stress on the specimen, and the specimen’s material mechanical property was described by the Johnson–Cook model, whose parameters were determined by Split Hopkinson Pressure Bar (SHPB) experiment. The residual stress distribution before and after UPT predicted by the finite element model agree well with the measurement results. This paper concludes with a discussion of the effects of ultrasonic peening time, as well as the frequency and amplitude of the peening needle on residual stress.


2013 ◽  
Vol 853 ◽  
pp. 135-142
Author(s):  
Jiang Cao ◽  
Chun Fu Li ◽  
Yan Wang ◽  
Xing Sun ◽  
Shu Yun Wang ◽  
...  

High strength aluminum alloys have been widely used in aviation manufacturing due to their favorable combination of intensity, stress corrosion resistance and toughness. However, the research and control of residual stress distribution in aluminum components have become a key issue to be solved during the heat treatment and subsequent processes. By means of the analysis of micro-indentation method and ANSYS finite element method, the residual stress distribution in 2A02 aluminum components after water quenching were systematically investigated, mainly considering two factors of the symmetry of structure and the variation of surface constraint. This study may give great help to the technology of relieving forgings residual stress of two alloys.The results of micro-indentation method show that the absolute value of the residual stress within the sample tends to decrease as the condition of constraint increase at the location of the same thickness; the absolute value of the surface residual stress also tends to decrease as the thickness of the sample increase with the same constraint conditions. The tested results by micro-indentation method are in consistent with the results of finite element simulation to a great extent.The results of finite element simulation are as follows: for these two aluminum alloy, the stress field distribution during the process of quenching is mainly influenced by the thickness of the samples. In general, at the initial stage of the quenching process, the stress state at the components surface are controlled by tensile stress in the direction of both thickness and width, while the residual stress within the samples is dominated by compressive stress; at the end of the quenching process, the stress field distribution just turn to the opposite. These results are in great agreement with the corresponding results of the indentation method.


2021 ◽  
Vol 1067 (1) ◽  
pp. 012141
Author(s):  
Muhsin J. Jweeg ◽  
H. A. Hamzah ◽  
Muhannad Al-Waily ◽  
Mohsin Abdullah Al-Shammari

Sign in / Sign up

Export Citation Format

Share Document