scholarly journals Broadband vibration energy harvesting from a non-deterministic system: Performance of different piezoelectric patch shapes

2021 ◽  
Vol 8 (2) ◽  
pp. 025702
Author(s):  
Abdelrahman Ali ◽  
Asan G A Muthalif ◽  
Jamil Renno
Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7364
Author(s):  
Yi-Ren Wang ◽  
Ming-Ching Chu

This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3926
Author(s):  
Joanna Iwaniec ◽  
Grzegorz Litak ◽  
Marek Iwaniec ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
...  

In this paper, the frequency broadband effect in vibration energy harvesting was studied numerically using a quasi-zero stiffness resonator with two potential wells and piezoelectric transducers. Corresponding solutions were investigated for system excitation harmonics at various frequencies. Solutions for the higher voltage output were collected in specific branches of the power output diagram. Both the resonant solution synchronized with excitation and the frequency responses of the subharmonic spectra were found. The selected cases were illustrated and classified using a phase portrait, a Poincaré section, and recurrence plot (RP) approaches. Select recurrence quantification analysis (RQA) measures were used to characterize the discussed solutions.


2010 ◽  
Vol 163 (2) ◽  
pp. 493-500 ◽  
Author(s):  
Prissana Rakbamrung ◽  
Mickaël Lallart ◽  
Daniel Guyomar ◽  
Nantakan Muensit ◽  
Chanchana Thanachayanont ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document