Design and optimization of a three-terminal piezoresistive pressure sensor for catheter based in vivo biomedical applications

2017 ◽  
Vol 3 (4) ◽  
pp. 045003 ◽  
Author(s):  
K V Meena ◽  
Ribu Mathew ◽  
A Ravi Sankar
Author(s):  
Tran Anh Vang ◽  
Xianmin Zhang ◽  
Benliang Zhu

The sensitivity and linearity trade-off problem has become the hotly important issues in designing the piezoresistive pressure sensors. To solve these trade-off problems, this paper presents the design, optimization, fabrication, and experiment of a novel piezoresistive pressure sensor for micro pressure measurement based on a combined cross beam - membrane and peninsula (CBMP) structure diaphragm. Through using finite element method (FEM), the proposed sensor performances as well as comparisons with other sensor structures are simulated and analyzed. Compared with the cross beam-membrane (CBM) structure, the sensitivity of CBMP structure sensor is increased about 38.7 % and nonlinearity error is reduced nearly 8%. In comparison with the peninsula structure, the maximum non-linearity error of CBMP sensor is decreased about 40% and the maximum deflection is extremely reduced 73%. Besides, the proposed sensor fabrication is performed on the n-type single crystal silicon wafer. The experimental results of the fabricated sensor with CBMP membrane has a high sensitivity of 23.4 mV/kPa and a low non-linearity of −0.53% FSS in the pressure range 0–10 kPa at the room temperature. According to the excellent performance, the sensor can be applied to measure micro-pressure lower than 10 kPa.


2016 ◽  
Vol 23 (10) ◽  
pp. 4531-4541 ◽  
Author(s):  
Chuang Li ◽  
Francisco Cordovilla ◽  
R. Jagdheesh ◽  
José L. Ocaña

1993 ◽  
Author(s):  
Man-shih A. Chan ◽  
Scott D. Collins ◽  
Rosemary L. Smith

2006 ◽  
Vol 34 ◽  
pp. 1073-1078 ◽  
Author(s):  
Guo Dagang ◽  
Samuel Ng Choon Po ◽  
Francis Tay Eng Hock ◽  
Lin Rongming

Author(s):  
J. D. Shelburne ◽  
Peter Ingram ◽  
Victor L. Roggli ◽  
Ann LeFurgey

At present most medical microprobe analysis is conducted on insoluble particulates such as asbestos fibers in lung tissue. Cryotechniques are not necessary for this type of specimen. Insoluble particulates can be processed conventionally. Nevertheless, it is important to emphasize that conventional processing is unacceptable for specimens in which electrolyte distributions in tissues are sought. It is necessary to flash-freeze in order to preserve the integrity of electrolyte distributions at the subcellular and cellular level. Ideally, biopsies should be flash-frozen in the operating room rather than being frozen several minutes later in a histology laboratory. Electrolytes will move during such a long delay. While flammable cryogens such as propane obviously cannot be used in an operating room, liquid nitrogen-cooled slam-freezing devices or guns may be permitted, and are the best way to achieve an artifact-free, accurate tissue sample which truly reflects the in vivo state. Unfortunately, the importance of cryofixation is often not understood. Investigators bring tissue samples fixed in glutaraldehyde to a microprobe laboratory with a request for microprobe analysis for electrolytes.


Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


Sign in / Sign up

Export Citation Format

Share Document