scholarly journals Derived wave of gradient driven diffusion's convective flux of efavirenz

2018 ◽  
Vol 2 (5) ◽  
pp. 055008 ◽  
Author(s):  
T Nemaura
Keyword(s):  
2015 ◽  
Vol 81 (5) ◽  
Author(s):  
I. Rogachevskii ◽  
N. Kleeorin

We derive equations for the mean entropy and the mean internal energy in low-Mach-number temperature stratified turbulence (i.e. for turbulent convection or stably stratified turbulence), and show that turbulent flux of entropy is given by$\boldsymbol{F}_{s}=\overline{{\it\rho}}\,\overline{\boldsymbol{u}s}$, where$\overline{{\it\rho}}$is the mean fluid density,$s$is fluctuation of entropy and overbars denote averaging over an ensemble of turbulent velocity fields,$\boldsymbol{u}$. We demonstrate that the turbulent flux of entropy is different from the turbulent convective flux,$\boldsymbol{F}_{c}=\overline{T}\,\overline{{\it\rho}}\,\overline{\boldsymbol{u}s}$, of the fluid internal energy, where$\overline{T}$is the mean fluid temperature. This turbulent convective flux is well-known in the astrophysical and geophysical literature, and it cannot be used as a turbulent flux in the equation for the mean entropy. This result is exact for low-Mach-number temperature stratified turbulence and is independent of the model used. We also derive equations for the velocity–entropy correlation,$\overline{\boldsymbol{u}s}$, in the limits of small and large Péclet numbers, using the quasi-linear approach and the spectral${\it\tau}$approximation, respectively. This study is important in view of different applications to astrophysical and geophysical temperature stratified turbulence.


2020 ◽  
Vol 500 (2) ◽  
pp. 2711-2731
Author(s):  
Andrew Bunting ◽  
Caroline Terquem

ABSTRACT We calculate the conversion from non-adiabatic, non-radial oscillations tidally induced by a hot Jupiter on a star to observable spectroscopic and photometric signals. Models with both frozen convection and an approximation for a perturbation to the convective flux are discussed. Observables are calculated for some real planetary systems to give specific predictions. The photometric signal is predicted to be proportional to the inverse square of the orbital period, P−2, as in the equilibrium tide approximation. However, the radial velocity signal is predicted to be proportional to P−1, and is therefore much larger at long orbital periods than the signal corresponding to the equilibrium tide approximation, which is proportional to P−3. The prospects for detecting these oscillations and the implications for the detection and characterization of planets are discussed.


2021 ◽  
Author(s):  
Qi Li ◽  
Sijun Zhang

Abstract Under hypersonic flight conditions, a vehicle travelling through the atmosphere could excite the air that flows around the body to very high temperatures as the kinetic energy of the vehicle is dissipated to the gas. Depending on the flight velocity, various chemical reactions will be produced behind a shock wave for stagnation region. These reactions greatly change the properties of air and cause considerable deviation from those of a thermally and calorically perfect gas. A vehicle flying through the higher altitude of the atmosphere at high velocities may also experience thermal non-equilibrium since the lower density reduces the collision frequency and the high velocity results in smaller transit times for the air molecules. Under such extremely thermal circumstances, the heat transfer by convection and radiation around a vehicle has been one of key issues for thermal protection system (TPS). In this paper, the computational aerothermodynamics with fully coupled radiative heat transfer is developed. To validate the proposed approach, it is employed to simulate the thermal and chemical nonequilibrium flows over Stardust. The computed results on the reentry space vehicle reveal both of convective flux and radiative flux are in good agreements with other predicted results.


2002 ◽  
Vol 185 ◽  
pp. 506-507
Author(s):  
Yanqin Wu

AbstractSurface convection zones in γ Doradus variables (early F-type g-mode pulsators) can drive pulsation via the ‘convective driving’ mechanism. This mechanism is first proposed and studied in the context of ZZ Cetis (hydrogen-envelope white dwarfs with g-mode pulsations) by Brickhill (1991) and Goldreich & Wu (1999). We implement and develop the convective driving theory to suit the environments on γ Dors, in particular, stronger super-adiabatic gradient and weaker convective flux than those in white dwarfs. This results in a spectrum of gravity-modes being excited in the observed temperature range. However, there are more remaining problems than those that are solved.


1991 ◽  
Vol 130 ◽  
pp. 27-32
Author(s):  
V. M. Canuto

AbstractWe use the latest models of turbulence to compute a new expression for the turbulent convective flux, Fc. The new values of Fc are up to ten times larger than those given by the mixing length theory, MLT. Astrophysical considerations indicate that the new model fares better with observational data than the MLT.


1990 ◽  
Vol 48 (1) ◽  
pp. 67-77 ◽  
Author(s):  
J. Horno ◽  
F. González-Caballero ◽  
A. Hayas ◽  
C.F. González-Fern'andez

2006 ◽  
Vol 2 (S239) ◽  
pp. 514-516
Author(s):  
Paul J. Bushby

AbstractObservations of magnetic fields in the quiet Sun indicate that kilogauss-strength fields can be found in the intergranular lanes. Since the magnetic energy of these localised features greatly exceeds estimates of the kinetic energy of the surrounding granular convection, it is difficult to see how these features could be formed simply by convective flux concentration. Idealised, high-resolution simulations of three-dimensional compressible magnetoconvection are used to investigate the formation of these features numerically. Initially we take a fully developed non-magnetic convective state into which we insert a weak, uniform, vertical magnetic field. Magnetic flux is rapidly swept into the convective downflows, where it is concentrated into localised regions. As the field strength within these regions becomes dynamically significant, the high magnetic pressure leads to partial evacuation (via the convective downflows). Provided that the magnetic Reynolds number is large enough, the strength of the resulting magnetic fields significantly exceeds the (so called) “equipartition” value, with the dynamical effects of the surrounding convection playing an important role in confining these magnetic features to localised regions. These results can be related to the well-known convective collapse instability, although there are some important differences between the two models.


Sign in / Sign up

Export Citation Format

Share Document