Chirping removes recoil effect on fluorescence signal of optical pumping by synchronous frequency modulation

2021 ◽  
Vol 3 (3) ◽  
pp. 035040
Author(s):  
Samaneh Birzhandi
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathanaël Cottet ◽  
Haonan Xiong ◽  
Long B. Nguyen ◽  
Yen-Hsiang Lin ◽  
Vladimir E. Manucharyan

AbstractInterfacing long-lived qubits with propagating photons is a fundamental challenge in quantum technology. Cavity and circuit quantum electrodynamics (cQED) architectures rely on an off-resonant cavity, which blocks the qubit emission and enables a quantum non-demolition (QND) dispersive readout. However, no such buffer mode is necessary for controlling a large class of three-level systems that combine a metastable qubit transition with a bright cycling transition, using the electron shelving effect. Here we demonstrate shelving of a circuit atom, fluxonium, placed inside a microwave waveguide. With no cavity modes in the setup, the qubit coherence time exceeds 50 μs, and the cycling transition’s radiative lifetime is under 100 ns. By detecting a homodyne fluorescence signal from the cycling transition, we implement a QND readout of the qubit and account for readout errors using a minimal optical pumping model. Our result establishes a resource-efficient (cavityless) alternative to cQED for controlling superconducting qubits.


Author(s):  
Stephen R. Bolsover

The field of intracellular ion concentration measurement expanded greatly in the 1980's due primarily to the development by Roger Tsien of ratiometric fluorescence dyes. These dyes have many applications, and in particular they make possible to image ion concentrations: to produce maps of the ion concentration within living cells. Ion imagers comprise a fluorescence microscope, an imaging light detector such as a video camera, and a computer system to process the fluorescence signal and display the map of ion concentration.Ion imaging can be used for two distinct purposes. In the first, the imager looks at a field of cells, measuring the mean ion concentration in each cell of the many in the field of view. One can then, for instance, challenge the cells with an agonist and examine the response of each individual cell. Ion imagers are not necessary for this sort of experiment: one can instead use a system that measures the mean ion concentration in a just one cell at any one time. However, they are very much more convenient.


1985 ◽  
Vol 10 (6) ◽  
pp. 883-891 ◽  
Author(s):  
M. Allegrini ◽  
G. Alzetta ◽  
P. Bicchi ◽  
S. Gozzini ◽  
L. Moi

1985 ◽  
Vol 10 (6) ◽  
pp. 659-674 ◽  
Author(s):  
E.W. Otten

1985 ◽  
Vol 10 (6) ◽  
pp. 1117-1138 ◽  
Author(s):  
C. Hermann ◽  
G. Lampel ◽  
V.I. Safarov
Keyword(s):  

2014 ◽  
Vol E97.C (3) ◽  
pp. 194-197 ◽  
Author(s):  
Yoshitaka TAKAHASHI ◽  
Hiroshi SHIMADA ◽  
Masaaki MAEZAWA ◽  
Yoshinao MIZUGAKI

Sign in / Sign up

Export Citation Format

Share Document