Applications for intact tissue collagen

Author(s):  
John A M Ramshaw ◽  
Veronica Glattauer
Keyword(s):  
1999 ◽  
Vol 12 (3) ◽  
pp. 182-188 ◽  
Author(s):  
Lorenz Bülow ◽  
Uwe Köhler ◽  
Rüdiger Cerff ◽  
Reinhard Hehl ◽  
Klaus Düring

The induction pattern of the GapC4 promoter from maize in transgenic potato has been analyzed by fusion to the β-glucuronidase (gus) gene. Under anaerobic conditions this promoter confers high level expression not only in leaves, stems, and roots but also in tubers. After inoculation of potato tuber disks with Erwinia carotovora subsp. atroseptica, β-glucuronidase (GUS) activity could be detected in macerated tissue as well as in surrounding intact tissue. In mock controls no induction was detected, ruling out any induction due to an overall limitation in oxygen in the experimental system. In addition, it could be proven that no diffusion of GUS protein from macerated into intact tissue occurred. The promoter was shown to be aerobically induced even in the absence of live bacteria by incubation with purified Erwinia spp. pectolytic enzymes alone. Therefore, promoter induction seems to be mediated by a mobile factor instead of by limitation in oxygen. These results demonstrate that the maize GapC4 promoter is suitable for directing foreign genes encoding antibacterial proteins in transgenic potato.


1995 ◽  
Author(s):  
Stephen J. Lockett ◽  
Curtis T. Thompson ◽  
James C. Mullikin ◽  
Damir Sudar ◽  
R. Khavari ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jun Li ◽  
Daniel M. Czajkowsky ◽  
Xiaowei Li ◽  
Zhifeng Shao
Keyword(s):  

2017 ◽  
Author(s):  
Logan Grosenick ◽  
Michael Broxton ◽  
Christina K. Kim ◽  
Conor Liston ◽  
Ben Poole ◽  
...  

Tracking the coordinated activity of cellular events through volumes of intact tissue is a major challenge in biology that has inspired significant technological innovation. Yet scanless measurement of the high-speed activity of individual neurons across three dimensions in scattering mammalian tissue remains an open problem. Here we develop and validate a computational imaging approach (SWIFT) that integrates high-dimensional, structured statistics with light field microscopy to allow the synchronous acquisition of single-neuron resolution activity throughout intact tissue volumes as fast as a camera can capture images (currently up to 100 Hz at full camera resolution), attaining rates needed to keep pace with emerging fast calcium and voltage sensors. We demonstrate that this large field-of-view, single-snapshot volume acquisition method—which requires only a simple and inexpensive modification to a standard fluorescence microscope—enables scanless capture of coordinated activity patterns throughout mammalian neural volumes. Further, the volumetric nature of SWIFT also allows fast in vivo imaging, motion correction, and cell identification throughout curved subcortical structures like the dorsal hippocampus, where cellular-resolution dynamics spanning hippocampal subfields can be simultaneously observed during a virtual context learning task in a behaving animal. SWIFT’s ability to rapidly and easily record from volumes of many cells across layers opens the door to widespread identification of dynamical motifs and timing dependencies among coordinated cell assemblies during adaptive, modulated, or maladaptive physiological processes in neural systems.


2010 ◽  
Vol 23 (10) ◽  
pp. 1137-1145 ◽  
Author(s):  
Pierluigi Mazzei ◽  
Alessandro Piccolo ◽  
Loredana Nugnes ◽  
Massimo Mascolo ◽  
Gaetano De Rosa ◽  
...  

1986 ◽  
Vol 80 (1) ◽  
pp. 91-101
Author(s):  
P.A. Edwards ◽  
I.M. Brooks ◽  
H.J. Bunnage ◽  
A.V. Foster ◽  
M.L. Ellison ◽  
...  

Cells from normal human breast epithelium were cloned in monolayer culture and the clones were stained with monoclonal antibodies. Tissue was from reduction mammoplasty operations. Cloning efficiencies were 5–30%. Two types of clone were identified: 10 to 30% were of relatively spread cells whose boundaries were often difficult to see by phase-contrast microscopy but where they were visible they appeared as dark lines. The edges of the clones usually appeared to be under tension. These clones were stained by two monoclonal antibodies, LICR-LON-M8 and M24, that stain luminal epithelial cells in the intact tissue, but not myoepithelial or stromal cells. Within a clone the cells showed a full range of antigenic phenotypes. This was confirmed for clones grown from single cells that had been isolated manually. The second type of clone was more compact with little evidence of tension at the edges, and cell boundaries were clearly visible and bright under phase contrast. These clones were not stained by antibodies M8 or M24. Both types of clone stained with a third monoclonal antibody that is specific for luminal epithelial cells in the intact tissue, LICR-LON-M18, but the distribution of staining was different in the different types of clone. The simplest interpretation of the two types of clone is that luminal epithelial cells give rise to the spread type of clone while the myoepithelial cells give rise to the more abundant and vigorous compact clones. Alternatively, the compact clones may be from luminal epithelial cells that have lost differentiated characteristics.


Sign in / Sign up

Export Citation Format

Share Document