Targeting Human T Cells by Retroviral Vectors Displaying Antibody Domains Selected from a Phage Display Library

2000 ◽  
Vol 11 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Martin Engelstadter ◽  
Maria Bobkova ◽  
Michael Baier ◽  
Jorn Stitz ◽  
Nicola Holtkamp ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5488-5488
Author(s):  
Tom van Meerten ◽  
Henk Rozemuller ◽  
Wendy J.M. Mackus ◽  
Paul W.H.I. Parren ◽  
Jan G.J. van de Winkel ◽  
...  

Abstract Adoptive transfer of T cells is frequently associated with unwanted side effects. In order to tackle these effects one could introduce a safety switch into the cells that permits their selective in vivo elimination. The human CD20 gene in combination with CD20 antibodies was recently proposed as a novel safety switch. In such a system, T cells may be genetically modified with a CD20-encoding vector prior to adoptive transfer. If necessary, CD20-transgenic cells can be eliminated in vivo through administration of CD20 antibodies, such as the chimeric antibody rituximab (RTX) that is currently used to treat CD20+ lymphoma. RTX activates the complement system and recruits immune effector cells, resulting in rapid death of CD20+ cells. Recently, a novel human CD20 antibody, Humab 7D8, was shown to have superior activity over RTX. In this study a set of CD20-encoding retroviral vectors was generated, which either lacked or contained one or both of two regulatory elements: the woodchuck posttranscriptional regulatory element (WPRE) to increase CD20 expression, and the chicken hypersensitivity site 4 insulator element (INS) to achieve a position independent expression of CD20 and to increase the safety profile of the vector by preventing activation of cellular (onco)genes by the retroviral enhancer. We found that the level of CD20 expression obtained with vectors containing INS was 2-fold lower than with vectors lacking INS. Additional inclusion of WPRE restored the level to that of the vector without INS. In addition, INS greatly enhanced the homogeneity of CD20 expression in T cells. Moreover, after 3 months in culture, all cells generated with CD20-INS had retained CD20 expression, while 60% of cells transduced with the control CD20 vector had lost CD20 expression. Complement dependent cell kill (CDC) of both RTX and HuMab 7D8 was dependent on the level of CD20 expression (p<0.01). However, while very low CD20-expressing cells were completely resistant against RTX they could be effectively killed by HuMab 7D8. For maximal kill of CD20-high cells, a 100-fold lower dose of HuMab 7D8 was required, compared to RTX. In vivo efficacy was studied through bioluminescent imaging of luciferase+ CD20-transgenic T cells. After transfer of CD20+ cells in immune deficient RAG2−/−gamma c−/− mice, both CD20 antibodies were capable of eliminating >99% of CD20+ cells, prolonging survival of mice from 20 till 42 days. In conclusion, we developed a safe vector that leads to homogeneous and stable expression of CD20 on human T cells. These cells can be killed effectively in vivo with HuMab 7D8, a recently developed CD20 antibody. This system will be applicable to other approaches that require inclusion of a safety switch in ex vivo modified cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongxia Wang ◽  
Liyan Wang ◽  
Yanning Li ◽  
Guangqi Li ◽  
Xiaochun Zhang ◽  
...  

Abstract Background Taking advantage of nanobodies (Nbs) in immunotherapy, we investigated the cytotoxicity of Nb-based chimeric antigen receptor T cells (Nb CAR-T) against lymphoma cells. Methods CD19 Nb CAR-T, CD20 Nb CAR-T, and Bispecific Nb CAR-T cells were generated by panning anti-human CD19- and CD20-specific nanobody sequences from a natural Nb-expressing phage display library, integrating Nb genes with a lentiviral cassette that included other CAR elements, and finally transducing T cells that were expanded under an optimization system with the above generated CAR lentivirus. Prepared Nb CAR-T cells were cocultured with tumour cell lines or primary tumour cells for 24 h or 5 days to evaluate their biological function. Results The nanobodies that we selected from the natural Nb-expressing phage display library had a high affinity and specificity for CD19 and CD20. CD19 Nb CAR-T, CD20 Nb CAR-T and Bispecific Nb CAR-T cells were successfully constructed, and these Nb CAR-T cells could strongly recognize Burkitt lymphoma cell lines (Raji and Daudi), thereby leading to activation, enhanced proliferation, and specific killing of target cells. Furthermore, similar results were obtained when using patient samples as target cells, with a cytotoxicity of approximately 60%. Conclusions Nanobody-based CAR-T cells can kill both tumour cell lines and patient-derived tumour cells in vitro, and Nb-based CAR-T cells may be a promising therapeutic strategy in future immunotherapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 5247-5247
Author(s):  
María L. Lamana ◽  
Rosa M. Yañez ◽  
Juan A. Bueren

Abstract Aiming to control GVHD by means of the transfer of suicide genes into donor T cells, we seeked to optimise the transduction of human T cells using immobilized anti-CD3i/28i MoAbs for T cell stimulation. In previous studies we showed that reducing the concentration of anti-CD3i, from 1,000ng/ml down to 1ng/ml, helps to preserve the cytotoxicity of the samples to an allogeneic stimulus and maintains the susceptibility of the T cells to the retroviral transduction. Aiming to reduce the cost of the manipulation procedure, we also tried to reduce the amount of anti-CD28 MoAb during the activation (pre-infection) and expansion (post-infection) steps. To investigate this issue, different doses of anti-CD28i were combined either with 1,000 ng/ml or with 10 ng/ml of anti-CD3i. In contrast to the effects observed with anti-CD3i, lowering the dose of anti-CD28i, from 1,000 ng/ml to a range of 500 to 10 ng/ml significantly decreased the transduction efficacy, as well as the total number of transduced T cells, regardless of the concentration of anti-CD3i used in the experiments. With the purpose of minimizing potential effects mediated by retroviral supernatants on the viability and growth of the T cells, we investigated whether standard infections with supernatants could be replaced by alternative or complementary transduction procedures based on the pre-loading of the retroviral vectors in fibronectin-coated bags. In these experiments, fibronectin-coated cell culture bags were pre-loaded with retroviral vectors by means of a 3h-incubation with the infective supernatants. Thereafter, peripheral blood lymphocytes were added to the culture bags, incubated O/N and then subjected to further infection cycles, either with pre-loaded vectors or with infective supernatants. Performing only one cycle of infection with either method, rendered similar low yields of transduced cells compared to results obtained after 2 infection cycles. Under these conditions, we found no differences between both methods, neither with respect to the transduction efficacy nor with the total number of transduced cells. Conducting a third infection cycle, either using the pre-loading or the supernatant infection method, did not increase significantly the transduction efficacy of the samples. Also, to simplify and improve the safety of the manipulation procedure, we studied alternatives to the use of human allogeneic or autologous serum for the supplement of the cell culture medium (RPMI). In these experiments, RPMI supplemented with 10% autologous serum was replaced by the CellGro and X-Vivo 10 serum-free media. Similar transduction efficacies and similar number of transduced cells were generated as a result of the manipulation of the samples with either medium. We conclude that optimised conditions of T cell stimulation and gene expression are obtained with 1ng/ml anti-CD3i and 1,000 ng/ml anti CD28i, and that conventional supernatant infections conducted with serum-supplemented media can be partially or completely replaced by pre-loading infections in serum-free media. We propose these manipulations to simplify and to reduce risks and costs associated to the transduction of human T cells; something that is of particular interest for the development of clinical protocols that require the infusion of large numbers of transduced T lymphocytes.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1471
Author(s):  
Manuela Mirow ◽  
Lea Isabell Schwarze ◽  
Boris Fehse ◽  
Kristoffer Riecken

The Gibbon Ape Leukemia Virus envelope protein (GALV-Env) mediates efficient transduction of human cells, particularly primary B and T lymphocytes, and is therefore of great interest in gene therapy. Using internal domains from murine leukemia viruses (MLV), chimeric GALV-Env proteins such as GALV-C4070A were derived, which allow pseudotyping of lentiviral vectors. In order to improve expression efficiency and vector titers, we developed a codon-optimized (co) variant of GALV-C4070A (coGALV-Env). We found that coGALV-Env mediated efficient pseudotyping not only of γ-retroviral and lentiviral vectors, but also α-retroviral vectors. The obtained titers on HEK293T cells were equal to those with the classical GALV-Env, whereas the required plasmid amounts for transient vector production were significantly lower, namely, 20 ng coGALV-Env plasmid per 106 293T producer cells. Importantly, coGALV-Env-pseudotyped γ- and α-retroviral, as well as lentiviral vectors, mediated efficient transduction of primary human T cells. We propose that the novel chimeric coGALV-Env gene will be very useful for the efficient production of high-titer vector preparations, e.g., to equip human T cells with novel specificities using transgenic TCRs or CARs. The considerably lower amount of plasmid needed might also result in a significant cost advantage for good manufacturing practice (GMP) vector production based on transient transfection.


Gene Therapy ◽  
2014 ◽  
Vol 21 (5) ◽  
pp. 533-538 ◽  
Author(s):  
L Koste ◽  
T Beissert ◽  
H Hoff ◽  
L Pretsch ◽  
Ö Türeci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document