Short Communication: Severe Immune Suppression in Patients Infected with R5-Tropic HIV-1 Strains Is Associated with Increased gp120 Net Charge at Variable Regions

2011 ◽  
Vol 27 (9) ◽  
pp. 965-967 ◽  
Author(s):  
Eduardo Seclén ◽  
Vincent Soriano ◽  
María del Mar González ◽  
Juan González-Lahoz ◽  
Eva Poveda
2011 ◽  
Vol 55 (11) ◽  
pp. 5078-5084 ◽  
Author(s):  
Laura Monno ◽  
Annalisa Saracino ◽  
Luigia Scudeller ◽  
Grazia Punzi ◽  
Gaetano Brindicci ◽  
...  

ABSTRACTHIV coreceptor tropism (CTR) testing is a prerequisite for prescribing a coreceptor antagonist. CTR is increasingly deduced by analyzing the V3 loop sequence of gp120. We investigated the impact of mutations outside V3 on CTR as determined by the enhanced-sensitivity Trofile assay (ESTA). Paired ESTA and gp120 sequencing (population sequencing; from codon 32 of the conserved C1 to the variable V5 domains) were obtained from 60 antiretroviral treatment (ART)-naïve patients (15 with AIDS) infected with subtype B HIV-1. For gp120 sequence analysis, nucleotide mixtures were considered when the second highest electropherogram peak was >25%; sequences were translated into all possible permutations and classified as X4, dual/mixed (DM), and R5 based on coincident ESTA results. ESTA identified R5 and DM viruses in 72 and 28% of patients, respectively; no pure X4 was labeled. Forty percent of AIDS patients had R5 strains. Thirty-two positions, mostly outside V3, were significantly (P< 0.05) different between R5 and DM sequences. According to multivariate analysis, amino acid changes at 9 and 7 positions within the C1 to C4 and V1 to V5 regions, respectively, maintained a statistical significance, as did the net charge of V3 and C4. When analyzing only R5 sequences, 6 positions in the variable regions were found which, along with the V4 net charge, were significantly different for sequences from early- and end-stage disease patients. This study identifies specific amino acid changes outside V3 which contribute to CTR. Extending the analysis to include pure X4 and increasing the sample size would be desirable to define gp120 variables/changes which should be included in predictive algorithms.


2015 ◽  
Vol 31 (11) ◽  
pp. 1160-1165 ◽  
Author(s):  
Marina R. Alexander ◽  
Rogier W. Sanders ◽  
John P. Moore ◽  
Per Johan Klasse

2010 ◽  
Vol 84 (7) ◽  
pp. 3576-3585 ◽  
Author(s):  
Marit J. van Gils ◽  
Evelien M. Bunnik ◽  
Judith A. Burger ◽  
Yodit Jacob ◽  
Becky Schweighardt ◽  
...  

ABSTRACT A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral immunity over time or to viral escape. In three LTNP and three progressors, high-titer cross-reactive HIV-1-specific neutralizing activity in serum against a multiclade pseudovirus panel was preserved during the entire clinical course of infection, even after AIDS diagnosis in progressors. However, while early HIV-1 variants from all six individuals could be neutralized by autologous serum, the autologous neutralizing activity declined during chronic infection. This could be attributed to viral escape and the apparent inability of the host to elicit neutralizing antibodies to the newly emerging viral escape variants. Escape from autologous neutralizing activity was not associated with a reduction in the viral replication rate in vitro. Escape from autologous serum with cross-reactive neutralizing activity coincided with an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites in the viral envelope. Positive selection pressure was observed in the variable regions in envelope, suggesting that, at least in these individuals, these regions are targeted by humoral immunity with cross-reactive potential. Our results may imply that the ability of HIV-1 to rapidly escape cross-reactive autologous neutralizing antibody responses without the loss of viral fitness is the underlying explanation for the absent effect of potent cross-reactive neutralizing humoral immunity on the clinical course of infection.


1993 ◽  
Vol 47 (2-3) ◽  
pp. 93-99 ◽  
Author(s):  
J.F Zagury ◽  
J Bernard ◽  
A Achour ◽  
A Astgen ◽  
A Lachgar ◽  
...  

2020 ◽  
Vol 128 (1) ◽  
pp. 46-54
Author(s):  
Nancy Birungi ◽  
Lars Thore Fadnes ◽  
Ingunn Marie Stadskleiv Engebretsen ◽  
Stein Atle Lie ◽  
James Kashyugyera Tumwine ◽  
...  

2019 ◽  
Vol 94 (6) ◽  
Author(s):  
Alexandra Y. Soare ◽  
Hagerah S. Malik ◽  
Natasha D. Durham ◽  
Tracey L. Freeman ◽  
Raymond Alvarez ◽  
...  

ABSTRACT Purinergic receptors are well-established modulators of inflammatory processes, primarily through detection of extracellular nucleotides that are released by dying or infected cells. Emerging literature has demonstrated that inhibition of these inflammatory receptors can block HIV-1 productive infection and HIV-1-associated inflammation. The specificity of receptor type and mechanism of interaction has not yet been determined. Here, we characterize the inhibitory activity of P2X1 receptor antagonists, NF279 and NF449, in cell lines, primary cells, and a variety of HIV-1 envelope (Env) clades. NF279 and NF449 blocked productive infection at the level of viral membrane fusion, with a range of inhibitory activities against different HIV-1 Env isolates. A mutant virus carrying a truncation deletion of the C-terminal tail of HIV-1 Env glycoprotein 41 (gp41) showed reduced sensitivity to P2X1 antagonists, indicating that the sensitivity of inhibition by these molecules may be modulated by Env conformation. In contrast, a P2X7 antagonist, A438079, had a limited effect on productive infection and fusion. NF279 and NF449 interfered with the ability of the gp120 variable regions 1 and 2 (V1V2)-targeted broadly neutralizing antibody PG9 to block productive infection, suggesting that these drugs may antagonize HIV-1 Env at gp120 V1V2 to block viral membrane fusion. Our observations indicate that P2X1 antagonism can inhibit HIV-1 replication at the level of viral membrane fusion through interaction with Env. Future studies will probe the nature of these compounds in inhibiting HIV-1 fusion and the development of small molecules to block HIV-1 entry via this mechanism. IMPORTANCE While effective treatment can lower the severe morbidity and mortality associated with HIV-1 infection, patients infected with HIV-1 suffer from significantly higher rates of noncommunicable comorbidities associated with chronic inflammation. Emerging literature suggests a key role for P2X1 receptors in mediating this chronic inflammation, but the mechanism is still unknown. Here, we demonstrate that HIV-1 infection is reduced by P2X1 receptor antagonism. This inhibition is mediated by interference with HIV-1 Env and can impact a variety of viral clades. These observations highlight the importance of P2X1 antagonists as potential novel therapeutics that could serve to block a variety of different viral clades with additional benefits for their anti-inflammatory properties.


2020 ◽  
Vol 117 (14) ◽  
pp. 7929-7940
Author(s):  
Ming Tian ◽  
Kelly McGovern ◽  
Hwei-Ling Cheng ◽  
Peyton Waddicor ◽  
Lisa Rieble ◽  
...  

HIV-1 vaccine development aims to elicit broadly neutralizing antibodies (bnAbs) against diverse viral strains. In some HIV-1–infected individuals, bnAbs evolved from precursor antibodies through affinity maturation. To induce bnAbs, a vaccine must mediate a similar antibody maturation process. One way to test a vaccine is to immunize mouse models that express human bnAb precursors and assess whether the vaccine can convert precursor antibodies into bnAbs. A major problem with such mouse models is that bnAb expression often hinders B cell development. Such developmental blocks may be attributed to the unusual properties of bnAb variable regions, such as poly-reactivity and long antigen-binding loops, which are usually under negative selection during primary B cell development. To address this problem, we devised a method to circumvent such B cell developmental blocks by expressing bnAbs conditionally in mature B cells. We validated this method by expressing the unmutated common ancestor (UCA) of the human VRC26 bnAb in transgenic mice. Constitutive expression of the VRC26UCA led to developmental arrest of B cell progenitors in bone marrow; poly-reactivity of the VRC26UCA and poor pairing of the VRC26UCA heavy chain with the mouse surrogate light chain may contribute to this phenotype. The conditional expression strategy bypassed the impediment to VRC26UCA B cell development, enabling the expression of VRC26UCA in mature B cells. This approach should be generally applicable for expressing other bnAbs that are under negative selection during B cell development.


2019 ◽  
Vol 35 (8) ◽  
pp. 729-733
Author(s):  
Jayshree Dhande ◽  
Pooja Salunke ◽  
Archana Kulkarni ◽  
Manisha Ghate ◽  
Madhuri Thakar

2018 ◽  
Vol 34 (7) ◽  
pp. 621-625
Author(s):  
Paul Alain Tagnouokam Ngoupo ◽  
Serge Alain Sadeuh-Mba ◽  
Fabienne De Oliveira ◽  
Elodie Téclaire Ngo-Malabo ◽  
Laure Ngono ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document