scholarly journals Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate

2017 ◽  
Vol 26 (14) ◽  
pp. 748-762 ◽  
Author(s):  
John D. Belcher ◽  
Chunsheng Chen ◽  
Julia Nguyen ◽  
Ping Zhang ◽  
Fuad Abdulla ◽  
...  
2020 ◽  
Vol 245 (15) ◽  
pp. 1308-1318
Author(s):  
Xingguo Zhu ◽  
Caixia Xi ◽  
Alexander Ward ◽  
Mayuko Takezaki ◽  
Huidong Shi ◽  
...  

NRF2 is the master regulator for the cellular oxidative stress response and regulates γ-globin gene expression in human erythroid progenitors and sickle cell disease mice. To explore NRF2 function, we established a human β-globin locus yeast artificial chromosome transgenic/NRF2 knockout (β-YAC/NRF2−/−) mouse model. NRF2 loss reduced γ-globin gene expression during erythropoiesis and abolished the ability of dimethyl fumarate, an NRF2 activator, to enhance γ-globin transcription. We observed decreased H3K4Me1 and H3K4Me3 chromatin marks and association of TATA-binding protein and RNA polymerase II at the β-locus control region (LCR) and γ-globin gene promoters in β-YAC/NRF2−/− mice. As a result, long-range chromatin interaction between the LCR DNase I hypersensitive sites and γ-globin gene was decreased, while interaction with the β-globin was not affected. Further, NRF2 loss silenced the expression of DNA methylcytosine dioxygenases TET1, TET2, and TET3 and inhibited γ-globin gene DNA hydroxymethylation. Subsequently, protein-protein interaction between NRF2 and TET3 was demonstrated. These data support the ability of NRF2 to mediate γ-globin gene regulation through epigenetic DNA and histone modifications. Impact statement Sickle cell disease is an inherited hemoglobin disorder that affects over 100,000 people in the United States causing high morbidity and early mortality. Although new treatments were recently approved by the FDA, only one drug Hydroxyurea induces fetal hemoglobin expression to inhibit sickle hemoglobin polymerization in red blood cells. Our laboratory previously demonstrated the ability of the NRF2 activator, dimethyl fumarate to induce fetal hemoglobin in the sickle cell mouse model. In this study, we investigated molecular mechanisms of γ-globin gene activation by NRF2. We observed the ability of NRF2 to modulate chromatin structure in the human β-like globin gene locus of β-YAC transgenic mice during development. Furthermore, an NRF2/TET3 interaction regulates γ-globin gene DNA methylation. These findings provide potential new molecular targets for small molecule drug developed for treating sickle cell disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 296
Author(s):  
Rosa Vona ◽  
Nadia Maria Sposi ◽  
Lorenza Mattia ◽  
Lucrezia Gambardella ◽  
Elisabetta Straface ◽  
...  

Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.


2011 ◽  
Vol 86 (6) ◽  
pp. 484-489 ◽  
Author(s):  
Erfan Nur ◽  
Bart J. Biemond ◽  
Hans-Martin Otten ◽  
Dees P. Brandjes ◽  
John-John B. Schnog ◽  
...  

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 144
Author(s):  
Olivia Edwards ◽  
Alicia Burris ◽  
Josh Lua ◽  
Diana J. Wilkie ◽  
Miriam O. Ezenwa ◽  
...  

This review outlines the current clinical research investigating how the haptoglobin (Hp) genetic polymorphism and stroke occurrence are implicated in sickle cell disease (SCD) pathophysiology. Hp is a blood serum glycoprotein responsible for binding and removing toxic free hemoglobin from the vasculature. The role of Hp in patients with SCD is critical in combating blood toxicity, inflammation, oxidative stress, and even stroke. Ischemic stroke occurs when a blocked vessel decreases oxygen delivery in the blood to cerebral tissue and is commonly associated with SCD. Due to the malformed red blood cells of sickle hemoglobin S, blockage of blood flow is much more prevalent in patients with SCD. This review is the first to evaluate the role of the Hp polymorphism in the incidence of stroke in patients with SCD. Overall, the data compiled in this review suggest that further studies should be conducted to reveal and evaluate potential clinical advancements for gene therapy and Hp infusions.


2011 ◽  
Vol 46 (3) ◽  
pp. 220-225 ◽  
Author(s):  
Anna Gizi ◽  
Ioannis Papassotiriou ◽  
Filia Apostolakou ◽  
Christina Lazaropoulou ◽  
Maria Papastamataki ◽  
...  

Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 180
Author(s):  
Charles Antwi-Boasiako ◽  
Gifty Dankwah ◽  
Robert Aryee ◽  
Charles Hayfron-Benjamin ◽  
Alfred Doku ◽  
...  

Background and Objectives: Altered copper and zinc homeostasis may influence the antioxidant defense system and consequently lead to oxidative stress and associated complications in sickle cell disease (SCD) patients. Iron levels have been reported to increase in sickle cell patients due to frequent blood transfusion, chronic intravenous haemolysis and increased absorption of iron from the gastrointestinal tract. These elevated levels of iron may also lead to extensive oxidative damage. The current study evaluated serum levels of iron, copper and zinc in SCD patients and “healthy” controls. Materials and Methods: The study was a cross-sectional one, comprising 90 SCD patients with Haemoglobin SS and Haemoglobin SC genotypes and 50 HbAA “healthy” controls. Serum levels of iron, copper and zinc were measured using a Flame Atomic Absorption Spectrometer (Variant 240FS manufactured by VARIAN Australia Pty Ltd, VIC, Australia). Copper and zinc ratios were calculated and analyzed. Results: Serum levels of iron and copper were significantly elevated in the SCD patients, compared to their “healthy” counterparts (p < 0.001). These levels were further increased in patients with haemoglobin SS in vaso-occlusive crises (HbSS VOCs). Serum zinc levels were, however, significantly lower in the SCD patients, particularly during vaso-occlusion. The copper-to-zinc ratio was also found to be significantly higher in the SCD patients. Conclusion: Elevated copper-to-zinc ratio may be a biomarker of sickle cell oxidative stress and associated complications. The ratio may also be informative for the management of sickle cell oxidative burden. The significantly lower levels of zinc in the SCD patients may warrant zinc supplementation.


Haematologica ◽  
2020 ◽  
pp. haematol.2020.261586
Author(s):  
Maria Alejandra Lizarralde-Iragorri ◽  
Sophie D. Lefevre ◽  
Sylvie Cochet ◽  
Sara El Hoss ◽  
Valentine Brousse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document