Donor Cells at the G1 Phase Enhance Homogeneous Gene Expression Among Blastomeres in Bovine Somatic Cell Nuclear Transfer Embryos

2012 ◽  
Vol 14 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Daisaku Iwamoto ◽  
Aya Kasamatsu ◽  
Atsushi Ideta ◽  
Manami Urakawa ◽  
Kazuya Matsumoto ◽  
...  
2013 ◽  
Vol 84 (8) ◽  
pp. 592-599 ◽  
Author(s):  
Yuji Goto ◽  
Muneyuki Hirayama ◽  
Kazuya Takeda ◽  
Nobuyuki Tukamoto ◽  
Osamu Sakata ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 125
Author(s):  
J. Mao ◽  
M. T. Zhao ◽  
K. M. Whitworth ◽  
L. D. Spate ◽  
K. Lee ◽  
...  

Treatment of cloned embryos with histone deacetylase inhibitors (HDACi) enhances developmental potential by alteration of epigenetic status. Oxamflatin is one of the potent HDACi. In our previous study, development to Day 7 blastocysts was enhanced when the porcine somatic cell nuclear transfer (SCNT) embryos were treated with oxamflatin for 16 h. The objective of the present study was to investigate the effect of oxamflatin treatment on XIST gene expression and DNA methylation of XIST gene and centromeric repeat element in Day 7 SCNT blastocysts. Somatic cell nuclear transfer was performed on enucleated metaphase II oocytes using a transgene female cell line. Cloned embryos were electrically fused and activated, treated with 150 nM oxamflatin for 16 h and cultured in PZM3 under 5% CO2, 5% oxygen, and 90% N2 for 7 days. Clones without Oxamflatin treatment were used as controls. For XIST methylation, IVF blastocysts at Day 7 were used as controls. Blastocysts at Day 7 were pooled from each treatment group and processed for methylation analysis by bisulfite sequencing and gene expression by quantitative real-time PCR. This experiment was replicated 4 times. The percent of CpG methylation in donor cells before SCNT was also determined. Data were analysed by using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA). In donor cells, 45.3 ± 5.8% of CpGs in a centromeric repeat element (9 CpGs in GenBank Z75640) were methylated. In the SCNT embryos, oxamflatin treatment reduced methylation from 27.3 ± 3.1% in the control to 18.2 ± 3.2% (P < 0.05). The average methylation in XIST (11 CpGs in GenBank KC149530.1) in donor cells was 42.4 ± 6.4%. This CpG island had 2 sites that were not methylated in any of the samples. However, the remaining 9 CpGs were methylated in 8 of 15 samples; for example, showing a parental imprint of ~50%. This implied that the CpG island studied represented the real-time status of the XIST locus in the cell and provides a good marker for reprogramming studies. XIST methylation level in Day 7 blastocysts was not different between oxamflatin (11.8 ± 3.2%) and control (11.8 ± 3.2%). However, XIST methylation in SCNT embryos was higher than in the same age IVF blastocysts (11.7 ± 1.7 v. 0.6 ± 2.4%; P < 0.01). Oxamflatin treatment tended to decrease XIST expression in Day 7 blastocysts compared with controls (18.8 ± 0.8 v. 21.7 ± 0.8; P < 0.1) as measured by real-time PCR. Interestingly, XIST gene expression was positively correlated with its methylation (P < 0.05). In conclusion, these results indicate that during nuclear reprogramming there was a dramatic decrease in DNA methylation from donor cells to Day 7 SCNT embryos. The higher methylation of XIST in SCNT embryos compared with IVF embryos suggests that the reprogramming of donor cells was not completed, which may be a contributor to low cloning efficiency. Oxamflatin treatment of SCNT embryos may enhance nuclear reprogramming by inhibiting XIST expression and reducing DNA methylation, resulting in better embryo development.


2013 ◽  
Vol 25 (1) ◽  
pp. 294
Author(s):  
G. A. Kim ◽  
H. J. Oh ◽  
J. Kim ◽  
T. H. Lee ◽  
J. H. Lee ◽  
...  

Mesenchymal stem cells (MSC) have been known as useful donor cells for somatic cell nuclear transfer (SCNT). It has been suggested that the culture condition of donor cells causes different results on preimplantation development of SCNT embryos. In this study, we investigated the patterns of gene expression of adipose-derived mesenchymal stem cells (ad-MSC) in different culture media (DMEM and RKME), and examined the effect of ad-MSC, with the gene expression changed, used as donor cells on the preimplantation development of cloned embryos. Canine ad-MSC were isolated from fat tissue of 3-year-old female beagle and were cultured in DMEM supplemented with 10% fetal bovine serum (MSC-DMEM) and RKME (MSC-MSC) provided from RNL Bio Corp. (Seoul, Korea). Total RNA was extracted from ad-MSC cultured in each culture medium. After synthesising cDNA of each sample, quantitative RT-PCR was done according to the Takara Bio Inc. guidelines and using the 7300 Real Time PCR Cycler System (Applied Biosystems, Carlsbad, CA, USA). The level of all tested gene transcription was normalized to β-actin expression levels. The relative quantification of gene expression was analysed by the 2–ΔΔCt method. The data from all experiments were analysed by Student’s t-test using a statistical analysis GraphPad Prism 4.02 (GraphPad Software Inc., San Diego, CA, USA). Significance was determined at P < 0.05. The stemness, the reprogramming-related gene expression level of donor cells of MSC-DMEM and MSC-MSC were compared. In order to confirm the effect of MSC cultured in 2 different culture media on somatic cell nuclear transfer, we performed interspecies somatic cell nuclear transfer (iSCNT). The enucleated bovine oocytes were injected, respectively, with donor cells of MSC-DMEM and MSC-MSC, and were fused by electrofusion. The iSCNT embryos were cultured in modified SOF at 38.5°C for 7 days in an atmosphere of 5% CO2 and 5% O2, and the developmental ability of iSCNT embryos was observed under the microscope. The MSC-MSC contained a significantly higher amount of Sox2, Nanog, Oct4, Stella, HDAC1, DNMT1, and MeCP2 than the MSC-DMEM, whereas the amount of Rex1 was not different in either MSC-MSC or MSC-DMEM. In the development ability of iSCNT embryos, MSC-DMEM embryos resulted in a 16-cell embryo formation rate that was higher than that of MSC-MSC embryos (9.09 and 5.30%, respectively; P < 0.05). However, the blastocyst formation rate was not different between MSC-DMEM embryos and MSC-MSC embryos (4.5 and 3.2%, respectively; P > 0.05). These results demonstrate that the gene expression of ad-MSC can be modified, by culture media, into a state where reprogramming is easily done. Even so, ad-MSC with gene expression changed by culture medium did not influence the developmental ability of blastocysts. In conclusion, the alteration of gene-related stemness and reprogramming in canine ad-MSC would not be able to effectively control reprogramming in SCNT. This study was supported by RDA (#PJ0089752012), RNL Bio (#550-20120006), IPET (#311062-04-1-SB010), Research Institute for Veterinary Science, and Nestlé Purina Korea.


2013 ◽  
Vol 25 (8) ◽  
pp. 1142 ◽  
Author(s):  
Insung Hwang ◽  
Yeon Woo Jeong ◽  
Joung Joo Kim ◽  
Hyo Jeong Lee ◽  
Mina Kang ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature’s diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P < 0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones’ inheritance of maternal domestic dog mitochondrial DNA.


2015 ◽  
Vol 40 (1) ◽  
pp. 7-15
Author(s):  
Bo Fu ◽  
Liang Ren ◽  
Di Liu ◽  
Jian-zhang Ma ◽  
Tie-zhu An ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 140
Author(s):  
M. Nino-Soto ◽  
G. Mastromonaco ◽  
P. Blondin ◽  
W. A. King

Expression of some X-chromosome linked genes has recently been shown to be altered in bovine somatic cell nuclear transfer (SCNT) derived embryos (Wrenzycki et al. 2002 Biol. Reprod. 66, 127), implying that the regulatory mechanisms of X-linked transcription are affected by embryo in vitro production (IVP) methods. We analyzed the transcriptional pattern of X-linked genes (BIRC4, GAB3, HPRT1, MECP2, RPS4X, SLC25A6, and XIST) in bovine in vitro fertilized (IVF) and SCNT male and female blastocysts to determine X-inactivation status and changes resulting from IVP. We collected pools of male (n = 5 pools) and female (n = 3 pools) IVF-derived blastocysts (Bousquet et al. 1999 Theriogenology 51, 59) and male (n = 5 pools) and female (n = 3 pools) SCNT-derived blastocysts (Mastromonaco et al. 2004 Reprod. Domest. Anim. 39, 462). Each pool consisted of five blastocysts. Embryos were washed in phosphate buffered saline (PBS) + 0.1% polyvinyl alcohol (PVA), collected, and stored at -80�C. Total RNA was extracted with an Absolutely RNA Microprep kit (Stratagene, La Jolla, CA, USA), DNase I treated, and precipitated with isopropanol and linear acrylamide (Ambion, Inc., Austin, TX, USA) as a carrier. Reverse transcription was performed with Oligo-dT (Invitrogen, Burlington, Ontario, Canada) and Superscript II RT (Invitrogen). Transcript quantification was performed by quantitative real-time PCR using SYBR Green I (LightCycler system, Roche, Diagnostics, Laval, Quebec, Canada). Data analysis was performed with SAS (SAS Institute, Inc., Cary, SC, USA) using a mixed-model factorial ANOVA and with results presented as estimates of the median, ratios of estimates, and 95% confidence intervals with � = 0.05. IVF-derived male and female blastocysts possessed similar levels of the transcripts analyzed, suggesting successful dosage compensation at this developmental stage for embryos fertilized in vitro. XIST was not detected in male IVF embryos. GAB3 was not detected in any of the female groups and, in addition, HPRT1 transcripts were not detected in SCNT derived female embryos. Male and female SCNT-derived blastocysts possessed marked differences in their transcript levels, with males showing statistically significantly higher levels of BIRC4 and RPS4X and females possessing higher levels of MECP2 and SLC25A6 transcripts although differences between the latter two were not statistically significant. XIST was detected in both male and female SCNT blastocysts. We conclude that dosage compensation between male and female IVF blastocysts is achieved at this developmental stage for the transcripts examined. However, this pattern was markedly changed in the SCNT group, affecting especially female SCNT blastocysts, suggesting that the regulatory mechanisms of X-inactivation and X-linked gene expression are substantially altered in SCNT embryos probably due to aberrant epigenetic patterns and faulty genome reprogramming. We are currently analyzing X-linked transcription in male and female in vivo-derived blastocysts in order to compare this group with IVP-derived embryos. This work was funded by NSERC, CIHR, and CRC.


Sign in / Sign up

Export Citation Format

Share Document