Mesenchymal Derivatives of Genetically Unstable Human Embryonic Stem Cells Are Maintained Unstable but Undergo Senescence in Culture As Do Bone Marrow–Derived Mesenchymal Stem Cells

2014 ◽  
Vol 16 (1) ◽  
pp. 1-8
Author(s):  
Angeliki Karagiannidou ◽  
Ioanna Varela ◽  
Krinio Giannikou ◽  
Maria Tzetis ◽  
Antonia Spyropoulos ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2579-2579
Author(s):  
Parul Trivedi ◽  
Peiman Hematti

Abstract Human embryonic stem cells (hESCs) could potentially provide a renewable source of different types of cells for cell therapy applications. Recently, mesenchymal stem cells (MSCs) have been derived from hESCs either through co-culturing with murine OP9 bone marrow stromal cell line or directly from hESCs without co-culturing with OP9 cells. Although the latter methodology is clinically advantageous over co-culturing with an animal cell layer those mesenchymal cells were reported to be positive for SSEA4. SSEA4 is a marker of undifferentiated hESCs and thus the presence of this marker on hESC-derived cells could potentially be problematic for clinical applications. We have recently achieved a novel and reproducible methodology for deriving a pure population of SSEA4-/CD73+ MSCs from federally approved hESC lines H1 and H9. To initiate the differentiation of hESCs to MSCs, we cultured undifferentiated hESCs on matrigel plates in murine embryonic fibroblast conditioned media with media changes every 3 days. Under these culture conditions a portion of embryonic stem cells differentiated into fibroblast looking cells. Through a multi-step process which involved the use of a culture methodology similar to what is being used to culture bone marrow (BM)-derived MSCs, and passaging cultured cells at defined time points we were able to derive a pure population of cells that were uniformly positive for MSC marker CD73 in about a 4-weeks period. These cells had fibroblast/mesenchymal looking morphology, and expressed cell surface marker antigens similar to what has been reported for adult human BM-derived MSCs: they are positive for CD29, CD44, CD54, CD71, CD90, glycophorin A, CD105, and were negative for hematopoietic markers such as CD34 and CD45. Similar to adult BM-derived MSCs these cells express HLA class-I antigens but not class-II antigens. Using established differentiation protocols we could differentiate the hESC-derived CD73+ MSCs into adipocytes, osteocytes, and chondrocytes as verified by immunohistochemistry and RT-PCR assays. So far we have grown these CD73+ MSCs up to passages 15–18. These cells retained their differentiation potential, and were karotypically normal when tested at passage 12. Most importantly, we did not observe any MSCs that were double positive for CD73 and SSEA4 antigen at any time point during our experiments. MSCs from a variety of fetal and adult sources are in various stages of clinical trials with some encouraging preliminary results. Our hESC-derived MSCs that are very similar to adult BM-derived MSCs regarding their growth and morphologic properties, immunophenotypic characteristics, differentiation potential, and importantly are devoid of hESC marker SSEA4 could potentially provide a novel source of MSCs for clinical applications.


2012 ◽  
Vol 6 (2) ◽  
pp. 95-107 ◽  
Author(s):  
T. A. Krylova ◽  
A. M. Koltsova ◽  
V. V. Zenin ◽  
A. S. Musorina ◽  
T. K. Yakovleva ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1389-1389
Author(s):  
Emmanuel N. Olivier ◽  
Anne C. Rybicki ◽  
Eric E. Bouhassira

Abstract Mesenchymal stem cells (MSC) are multipotent progenitors that contribute to the formation of many connective tissues including fat, bone, cartilage and muscle. Because of this great versatility MSCs have a large therapeutic potential particularly in the areas of cell therapy and regenerative and reconstructive medicine. MSCs are rare cells that can be isolated from tissues such as bone marrow, cartilage and muscles. Since no unique marker characteristic of MSCs has been identified, investigators have relied on a series of functional and morphological criteria to identify them. These criteria include growth on plastic, resistance to trypsin, presence of specific cell surface antigens and potential to differentiate into adipocytes, chondrocytes and osteoblasts.We report here a method to reproducibly differentiate human embryonic stem cells (hESCs) into MSCs by pre-differentiating for 8 days hESCs growing on MEF, mechanically dissociating the differentiated colonies, replating the differentiated colonies in DMEM, 10% FBS and 7.5% CO2 for 4 to 8 weeks until a thick multi-layer epithelium-like sheet of cells develop; and dissociating these multi-layer structures with a combination of proteases. The cells obtained with this procedure are morphologically similar to MSCs, are contact-inhibited, can be grown in culture for about 20–25 passages and have a gene expression profile, as determined by cDNA micro-array, similar to published profiles of mesenchymal stem cells. Immuno-phenotyping of these hESC-derived MSCs revealed a immuno-profile similar to bone marrow MSCs (negative for CD34, CD45 and positive for CD13, CD44, CD71, CD73, CD105, CD166, HLA ABC, SSEA4 and TRA1-85). Functional differentiation experiments revealed that hESC-derived MSCs can be differentiated into osteocytes and adipocytes as demonstrated by staining with alizarin red and oil red O. Finally, we have also shown that hESC-derived MSCs can support the growth of undifferentiated hESCs cells and of CD34+ hematopoietic cells.The ability to produce MSCs from hESCs should prove useful to produce large amount of genetically identical and genetically modifiable MSCS that can be used to study the biology of MSCs and for therapeutic applications.


2010 ◽  
Vol 5 (3) ◽  
pp. 180-190 ◽  
Author(s):  
Sanne K. Both ◽  
Aart A. van Apeldoorn ◽  
Jojanneke M. Jukes ◽  
Mikael C.O. Englund ◽  
Johan Hyllner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document