Ginkgo biloba Extract Inhibited Cell Proliferation and Invasion by Stimulating TET2 Expression Through miR-29a in Colorectal Carcinoma Cells

2021 ◽  
Author(s):  
Chengshun Li ◽  
Chuanni Peng ◽  
Ziping Jiang ◽  
Haobo Hu ◽  
Chao Lin ◽  
...  
2018 ◽  
Vol 50 (4) ◽  
pp. 1398-1413 ◽  
Author(s):  
Min Li ◽  
Chun-Xia Ren ◽  
Jian-Mei Zhang ◽  
Xiao-Yan Xin ◽  
Teng Hua ◽  
...  

Background/Aims: This study is aimed at identification of miR-195-5p/MMP14 expression in cervical cancer (CC) and their roles on cell proliferation and invasion profile of CC cells through TNF signaling pathway in CC. Methods: Microarray analysis, gene set enrichment analysis (GSEA) and DAVID were used to analyze differentially expressed miRNAs, mRNAs and signaling pathways. MiR-195-5p and MMP14 expression levels in CC cell were determined by qRT-PCR. Western blot was employed to measure MMP14 and TNF signaling pathway-relating protein level. Luciferase reporter system was used to confirm the targeting relationship between MMP14 and miR-195-5p. Cell proliferation and invasion was respectively deeded by CCK8, transwell. In vivo experiment was carried out to study the impact of MMP14 and miR-195-5p on CC development in mice. Results: The microarray analysis and the results of qRT-PCR determined that miR-195-5p was under-expressed and MMP14 was over-expressed in CC cells. GSEA and DAVID analysis showed that TNF signaling pathway was regulated by miR-195-5p/MMP14 and activated in cervical carcinoma cells. The miR-195-5p and MMP14 have a negative regulation relation. In vivo experiment found that down-regulated MMP14 and up-regulated miR-195-5p suppressed the tumor development. Conclusion: Our results suggest that MMP14 is a direct target of miR-195-5p, and down-regulated MMP14 and up-regulated miR-195-5p suppressed proliferation and invasion of CC cells by inhibiting TNF signaling pathway.


2019 ◽  
Vol 20 (19) ◽  
pp. 4946 ◽  
Author(s):  
Tsui ◽  
Lin ◽  
Chang ◽  
Hou ◽  
Chen ◽  
...  

Transgelin (TAGLN/SM22-α) is a regulator of the actin cytoskeleton, affecting the survival, migration, and apoptosis of various cancer cells divergently; however, the roles of TAGLN in bladder carcinoma cells remain inconclusive. We compared expressions of TAGLN in human bladder carcinoma cells to the normal human bladder tissues to determine the potential biological functions and regulatory mechanisms of TAGLN in bladder carcinoma cells. Results of RT-qPCR and immunoblot assays indicated that TAGLN expressions were higher in bladder smooth muscle cells, fibroblast cells, and normal epithelial cells than in carcinoma cells (RT-4, HT1376, TSGH-8301, and T24) in vitro. Besides, the results of RT-qPCR revealed that TAGLN expressions were higher in normal tissues than the paired tumor tissues. In vitro, TAGLN knockdown enhanced cell proliferation and invasion, while overexpression of TAGLN had the inverse effects in bladder carcinoma cells. Meanwhile, ectopic overexpression of TAGLN attenuated tumorigenesis in vivo. Immunofluorescence and immunoblot assays showed that TAGLN was predominantly in the cytosol and colocalized with F-actin. Ectopic overexpression of either p53 or PTEN induced TAGLN expression, while p53 knockdown downregulated TAGLN expression in bladder carcinoma cells. Our results indicate that TAGLN is a p53 and PTEN-upregulated gene, expressing higher levels in normal bladder epithelial cells than carcinoma cells. Further, TAGLN inhibited cell proliferation and invasion in vitro and blocked tumorigenesis in vivo. Collectively, it can be concluded that TAGLN is an antitumor gene in the human bladder.


2016 ◽  
Vol 470 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Chun Jin ◽  
Zhao Jin ◽  
Nian-zhao Chen ◽  
Min Lu ◽  
Chang-bao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document