bladder carcinoma cells
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 12)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 12 (14) ◽  
pp. 4341-4354
Author(s):  
Shi Li ◽  
Longyi Mao ◽  
Fangrong Zhao ◽  
Juan Yan ◽  
Guanbin Song ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5582
Author(s):  
Saira Justin ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Felix K.-H. Chun ◽  
Eva Juengel ◽  
...  

Chronic treatment with the mTOR inhibitor, everolimus, fails long-term in preventing tumor growth and dissemination in cancer patients. Thus, patients experiencing treatment resistance seek complementary measures, hoping to improve therapeutic efficacy. This study investigated metastatic characteristics of bladder carcinoma cells exposed to everolimus combined with the isothiocyanate sulforaphane (SFN), which has been shown to exert cancer inhibiting properties. RT112, UMUC3, or TCCSUP bladder carcinoma cells were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM), alone or in combination. Adhesion and chemotaxis along with profiling details of CD44 receptor variants (v) and integrin α and β subtypes were evaluated. The functional impact of CD44 and integrins was explored by blocking studies and siRNA knock-down. Long-term exposure to everolimus enhanced chemotactic activity, whereas long-term exposure to SFN or the SFN-everolimus combination diminished chemotaxis. CD44v4 and v7 increased on RT112 cells following exposure to SFN or SFN-everolimus. Up-regulation of the integrins α6, αV, and β1 and down-regulation of β4 that was present with everolimus alone could be prevented by combining SFN and everolimus. Down-regulation of αV, β1, and β4 reduced chemotactic activity, whereas knock-down of CD44 correlated with enhanced chemotaxis. SFN could, therefore, inhibit resistance-related tumor dissemination during everolimus-based bladder cancer treatment.


2020 ◽  
Vol 21 (1) ◽  
pp. 304
Author(s):  
Pham Ngoc Khoi ◽  
Shinan Li ◽  
Ung Trong Thuan ◽  
Dhiraj Kumar Sah ◽  
Taek Won Kang ◽  
...  

Muscle invasive bladder carcinoma is a highly malignant cancer with a high mortality rate, due to its tendency to metastasize. The tyrosine kinase recepteur d’origine nantais (RON) promotes bladder carcinoma metastasis. Lysophosphatidic acid (LPA) is a phospholipid derivative, which acts as a signaling molecule to activate three high affinity G-protein coupled receptors, LPA1, LPA2, and LPA3. This in turn leads to cell proliferation and contributes to oncogenesis. However, little is known about the effects of LPA on invasive bladder cancer (IBC). In this study, we discovered that LPA upregulated RON expression, which in turn promoted cell invasion in bladder cancer T24 cells. As expected, we found that the LPA receptor was essential for the LPA induced increase in RON expression. More interestingly, we discovered that LPA induced RON expression via the MAPK (ERK1/2, JNK1/2), Egr-1, AP-1, and NF-κB signaling axes. These results provide experimental evidence and novel insights regarding bladder malignancy metastasis, which could be helpful for developing new therapeutic strategies for IBC treatment.


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 10 ◽  
Author(s):  
Yu-Hsiang Lin ◽  
Ke-Hung Tsui ◽  
Kang-Shuo Chang ◽  
Chen-Pang Hou ◽  
Tsui-Hsia Feng ◽  
...  

Maspin is a member of the clade B serine protease inhibitor superfamily and exhibits diverse regulatory effects in various types of solid tumors. We compared the expressions of maspin and determined its potential biological functions and regulatory mechanisms in bladder carcinoma cells in vitro and in vivo. The results of RT-qPCR indicated that maspin expressed significantly lower levels in the bladder cancer tissues than in the paired normal tissues. The immunohistochemical assays of human bladder tissue arrays revealed similar results. Maspin-knockdown enhanced cell invasion whereas the overexpression of maspin resulted in the opposite process taking place. Knockdown of maspin also enhanced tumorigenesis in vivo and downregulated protein levels of acetyl-histone H3. Moreover, in bladder carcinoma cells, maspin modulated HDAC1 target genes, including cyclin D1, p21, MMP9, and vimentin. Treatment with MK2206, which is an Akt inhibitor, upregulated maspin expression, whereas PTEN-knockdown or PTEN activity inhibitor (VO-OHpic) treatments demonstrated reverse results. The ectopic overexpression of p53 or camptothecin treatment induced maspin expression. Our study indicated that maspin is a PTEN-upregulated and p53-upregulated gene that blocks cell growth in vitro and in vivo, and may act as an HDAC1 inhibitor in bladder carcinoma cells. We consider that maspin is a potential tumor suppressor gene in bladder cancer.


2019 ◽  
Vol 38 (4) ◽  
pp. 1020-1030 ◽  
Author(s):  
Mariana S. Sonego ◽  
Natália V. Segatto ◽  
Lucas Damé ◽  
Mariana Fronza ◽  
Carolina B. Gomes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document