ZnO Nanoparticles: Effect of Size on Bacterial Bioluminescence, Seed Germination, Algal Growth, and Gene Mutation

2018 ◽  
Vol 35 (3) ◽  
pp. 231-239 ◽  
Author(s):  
In Chul Kong ◽  
Ramesh Raliya ◽  
Kyung-Seok Ko ◽  
Pratim Biswas
2020 ◽  
Vol 21 (18) ◽  
pp. 6767 ◽  
Author(s):  
In Chul Kong ◽  
Kyung-Seok Ko ◽  
Dong-Chan Koh ◽  
Chul-Min Chon

The differences in the toxicity of cobalt oxide nanoparticles (Co-NPs) of two different sizes were evaluated in the contexts of the activities of bacterial bioluminescence, xyl-lux gene, enzyme function and biosynthesis of β-galactosidase, bacterial gene mutation, algal growth, and plant seed germination and root/shoot growth. Each size of Co-NP exhibited a different level of toxicity (sensitivity) in each biological activity. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under the test conditions in the case of gene-mutation experiments. Overall, the inhibitory effects on all five bacterial bioassays were greater than those on algal growth, seed germination, and root growth. However, in all cases, the small Co-NPs showed statistically greater (total average about two times) toxicity than the large Co-NPs, except in shoot growth, which showed no observable inhibition. These findings demonstrate that particle size may be an important physical factor determining the fate of Co-NPs in the environment. Moreover, combinations of results based on various biological activities and physicochemical properties, rather than only a single activity and property, would better facilitate accurate assessment of NPs’ toxicity in ecosystems.


2020 ◽  
Vol 21 (22) ◽  
pp. 8465
Author(s):  
In Chul Kong ◽  
Kyung-Seok Ko ◽  
Dong-Chan Koh

Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.


2018 ◽  
Author(s):  
Manpreet Singh ◽  
Jagpreet Singh ◽  
Deepanjali Sharma ◽  
Bhupinder Kaur ◽  
Mohit Rawat

2016 ◽  
Vol 49 (5) ◽  
pp. 411-415
Author(s):  
In Chul Kong ◽  
Mun Hee Lee ◽  
Hyun Jin Jang ◽  
Eun Jin Lee ◽  
Kyung Seok Ko ◽  
...  

Nanoparticles have achieved novel applications in biotechnology and agricultural industries. Nanoparticles on plants may cover a new insight to the ecosystems. There is a need for advance study of the possible effects of the nanoparticles on plant growth and development. In the present investigation, zinc oxide nanoparticles have been prepared by the simple chemical route and were authorized by UV-vis spectrophotometer and X-ray diffraction (XRD) analysis alongwith transmission electron microscope (TEM). The consequence of various concentrations of synthesized zinc oxide nanoparticles on wheat seeds (variety: lok-1) was studied by soaking approach and follow its effect on seedling growth of wheat (at 5 days). The seed germination, plant growth & chlorophyll content characteristics were measured by using standard biophysical techniques and studied. Results showed enhancement in germination and growth characteristics in five days grown wheat seedlings for control upto thousand ppm. Above thousand ppm, the considerable drop off was observed in these parameters upto two thousand ppm. Also, the chlorophyll content in the control sample is greater than the samples treated with the various concentrations of zinc oxide nanoparticles. There was a noticeable effect that employing suitable concentration of ZnO nanoparticles could support the seed germination of wheat in contrast to untreated control.


Sign in / Sign up

Export Citation Format

Share Document