Bone Marrow as a Source of Hematopoietic Stem Cells for Human Gene Therapy of β-Thalassemia

2011 ◽  
Vol 22 (4) ◽  
pp. 507-513 ◽  
Author(s):  
Marta Claudia Frittoli ◽  
Erika Biral ◽  
Barbara Cappelli ◽  
Matilde Zambelli ◽  
Maria Grazia Roncarolo ◽  
...  
Hematology ◽  
2000 ◽  
Vol 2000 (1) ◽  
pp. 376-393 ◽  
Author(s):  
David A. Williams ◽  
Arthur W. Nienhuis ◽  
Robert G. Hawley ◽  
Franklin O. Smith

Abstract This article reviews 1) the use of gene transfer methods to genetically manipulate hematopoietic stem cell targets, 2) recent advances in technology that are addressing problems that have prevented widespread successful translation of gene transfer approaches for the cure of disease, and 3) recent regulatory issues related to human gene therapy trials. In Section I, Dr. Nienhuis describes the use of alternative viral envelopes and vector systems to improve efficiency of transduction of hematopoietic stem cells. Major limitations of stem cell transduction are related to low levels of viral receptors on the stem cells of large animal species and the low frequency of cycling stem cells in the bone marrow. Attempts to circumvent these limitations by exploiting non-oncoretroviral vectors and pseudotyping of Moloney vectors with alternative envelopes are discussed. In Section II, Dr. Hawley addresses new strategies to improve the expression of transgenes in cells derived from long-term reconstituting hematopoietic stem cells. Transgene silencing in transduced hematopoietic stem cells remains an obstacle to gene therapy for some gene sequences. New generations of retroviral backbones designed to both improve expression and reduce silencing in primary cells are explored. In Section III, Drs. Smith and Cornetta update regulatory issues related to human gene therapy trials. Increased scrutiny of human trials has led to changes in requirements and shifts in emphasis of existing regulations, which apply to human gene therapy trials. The current Food and Drug Administration's structure and regulations and the roles of the Recombinant DNA Advisory Committee of the NIH and other sponsors and partners in gene therapy trials are reviewed.


2010 ◽  
Vol 21 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Evangelia Yannaki ◽  
Nikoleta Psatha ◽  
Evangelia Athanasiou ◽  
Garyfalia Karponi ◽  
Varnavas Constantinou ◽  
...  

Hematology ◽  
2000 ◽  
Vol 2000 (1) ◽  
pp. 376-393 ◽  
Author(s):  
David A. Williams ◽  
Arthur W. Nienhuis ◽  
Robert G. Hawley ◽  
Franklin O. Smith

This article reviews 1) the use of gene transfer methods to genetically manipulate hematopoietic stem cell targets, 2) recent advances in technology that are addressing problems that have prevented widespread successful translation of gene transfer approaches for the cure of disease, and 3) recent regulatory issues related to human gene therapy trials. In Section I, Dr. Nienhuis describes the use of alternative viral envelopes and vector systems to improve efficiency of transduction of hematopoietic stem cells. Major limitations of stem cell transduction are related to low levels of viral receptors on the stem cells of large animal species and the low frequency of cycling stem cells in the bone marrow. Attempts to circumvent these limitations by exploiting non-oncoretroviral vectors and pseudotyping of Moloney vectors with alternative envelopes are discussed. In Section II, Dr. Hawley addresses new strategies to improve the expression of transgenes in cells derived from long-term reconstituting hematopoietic stem cells. Transgene silencing in transduced hematopoietic stem cells remains an obstacle to gene therapy for some gene sequences. New generations of retroviral backbones designed to both improve expression and reduce silencing in primary cells are explored. In Section III, Drs. Smith and Cornetta update regulatory issues related to human gene therapy trials. Increased scrutiny of human trials has led to changes in requirements and shifts in emphasis of existing regulations, which apply to human gene therapy trials. The current Food and Drug Administration's structure and regulations and the roles of the Recombinant DNA Advisory Committee of the NIH and other sponsors and partners in gene therapy trials are reviewed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2358-2358
Author(s):  
Ali Nowrouzi ◽  
Africa Gonzales-Murillo ◽  
Anna Paruzynski ◽  
Ariana Jacome ◽  
Paula Rio ◽  
...  

Abstract Improved protocols using lentiviral vectors have been established with minimal cytokine exposure and short transduction times proving more suitable for overcoming the disease-specific challenge in correcting functionally defective hematopoietic stem cells (HSCs) of Fanconi Anemia (FA) patients. Bone marrow (BM) cells from FA patients were transduced ex vivo with lentiviral vectors (LVs) expressing FANCA and/or EGFP using optimized conditions to preserve the repopulating properties of the primitive hematopoietic stem cells (manuscript submitted). In a forward preclinical screening of possible LV-induced side effects we analyzed the insertional inventory in colonies generated by FA BM cells previously transduced with the LVs. We have established and optimized DNA and RNA isolation procedures for minimal cell numbers, suitable for large scale screening of colony forming cell (CFC) derived colonies by linear amplification-mediated PCR (LAM-PCR) and massive parallel pyrosequencing (454 GS Flx system; Roche). This approach is applicable for detecting early indicators of clonal selection, and is based on the analysis of common integration sites (CIS) and non-random distribution of vector insertions in particular genomic loci. From a total of 180 CFC-derived colonies expressing the EGFP LV marker gene, 298 vector insertions could be sequenced and mapped to the human genome. The analysis of vector targeted gene coding regions showed a non-random genomic distribution of LV insertions, with a significant overrepresentation of RefSeq genes that are part of distinct functional categories. Accordingly vector associated genes are predominantly involved in cellular signal cascades regulated by the MAP Kinase family known to be involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. Apart from the observed high integration frequency in genes (>80%), partial loss of vector LTR nucleotides was detected in >10% of the integrants (3–25bp). Notably, >20% of the lentiviral insertions were found to be located in CIS of predominantly 2nd order. Further screening assays of LV transduced CFC-derived colonies will allow a deeper investigation in the functional consequences of such CIS targeting in gene therapy protocols of FA. However our results suggest that the LV transduction of FA BM progenitors leads to a relatively high frequency of insertions in CIS which may be indicative of an insertion based (specific) selection mechanism. We herby show that the ex vivo large scale integration site analyses of CFC-derived colonies from patients considered to undergo gene therapeutic treatments constitutes a robust approach, which combined with mouse preclinical biosafety studies will help to improve the safety of clinical gene therapy protocols. The non-random distribution of LV integrations in CIS associated genes and in genes involved in particular cellular pathways may be indicative for the altered biochemical pathways characteristic of FA stem cells, with reported defects in DNA repair and self-renewal.


2019 ◽  
Vol 47 (5) ◽  
pp. 656-660 ◽  
Author(s):  
Sundeep Chandra ◽  
Patrizia Cristofori ◽  
Carlos Fonck ◽  
Charles A. O’Neill

A therapeutic option for monogenic disorders is gene therapy with ex vivo-transduced autologous hematopoietic stem cells (HSCs). Safety or efficacy studies of ex vivo-modified HSCs are conducted in humanized mouse models after ablation of the murine bone marrow and transfer of human CD34+ HSCs. Engrafted human CD34+ cells migrate to bone marrow and differentiate into various human hematopoietic lineages. A 12-week study was conducted in NSG™ mice to evaluate engraftment, differentiation, and safety of human CD34+ cells that were transduced ( ex vivo) with a proprietary lentiviral vector encoding a human gene (BMRN-1) or a mock (green fluorescent protein) vector. Several mice intravenously injected with naive CD34+ cells or transduced CD34+ cells had variable lymphohistiocytic inflammatory cell infiltrates and microgranulomas in the liver and lungs consistent with graft-versus-host disease (GVHD). Spleen, bone marrow, stomach, reproductive tract, but not the skin had similar inflammatory changes. Ex vivo viral transduction of CD34+ cells did not impact engraftment or predispose to xenogeneic GVHD.


Blood ◽  
1996 ◽  
Vol 88 (3) ◽  
pp. 855-862 ◽  
Author(s):  
T Moritz ◽  
P Dutt ◽  
X Xiao ◽  
D Carstanjen ◽  
T Vik ◽  
...  

Abstract Efficient transduction of reconstituting hematopoletic stem cells (HSC) is currently only possible by cocultivation of target cells directly on producer cell lines, a method not applicable to human gene therapy protocols. Our laboratory has previously shown adhesion of primitive hematopoletic stem and progenitor cells to the carboxy-terminal 30/35- kD fragment of the extracellular matrix molecule fibronectin (FN 30/35) (Nature 352:438, 1991) and increased transduction of human hematopoietic progenitor cells via retroviral vectors while adherent to this fragment (J Clin Invest 93:1451, 1994). Here we report that (1) transduction of reconstituting murine HSC assayed 12 months after infection with retrovirus supernatant on FN 30/35 is as effective as cocultivation directly on producer cells; (2) recombinant retrovirus particles directly adhere to FN 30/35 in a quantitative and dose- dependent fashion; and (3) increased transduction efficiency on FN 30/ 35 does not appear to be associated with increased cell proliferation or activation of protein phosphorylation typically induced by integrin- fibronectin interactions. Therefore, we speculate that supernatant infection of HSC on FN 30/35 leads to colocalization of retrovirus particles and target cells on FN 30/35 molecule with a large increase in local virus titer presented to the cell. These findings have direct and important implications for the modification of current human gene therapy protocols.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3271-3271
Author(s):  
Claudia R. Ball ◽  
Manfred Schmidt ◽  
Ingo H. Pilz ◽  
Fessler Sylvia ◽  
David A. Williams ◽  
...  

Abstract Gene therapy is a promising approach for the therapy of hereditary diseases, but after the occurrence of adverse side effects in a SCID-X1 gene therapy trial increased biological safety has become a major goal of gene therapy. A reduction of the number of transplanted cells could help achieve this goal by reducing the statistical likelihood of insertional mutagenesis simply by simply reducing the number of transplanted cells carrying potentially untoward insertion sites. As we have previously shown, incorporation of the selectable marker gene MGMT P140K into a retroviral vector allows a reduced intensity and toxicity in vivo selection of low numbers of genetically modified hematopoietic cells by chemotherapy with O6-benzylguanine (O6BG) and nitrosourea drugs such as 1,3-bis-2 chloroethyl-1-nitrosourea (BCNU). However, it is still not known whether extended selection over longer periods of time influences the long-term proliferation and differentiation capacity of murine haematopoietic stem cells. To address this question, serial transplantations of murine MGMT-P140K-expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were performed. After ex vivo gene transfer of a MGMT/IRES/eGFP-encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and serially transplanted. First, 2nd and 3rd generation recipient mice were subsequently treated every four weeks in order to amplify treatment effects on the long-term clonal behaviour of modified hematopoietic stem cells. Lineage contribution of transduced hematopoiesis was monitored by FACS over a total of 17 rounds of selection and clonality was monitored by LAM-PCR over a total of 16 rounds of selection. In primary mice, the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without inducing persistent peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential in the transduced compared to control cells in 1st and 2nd generation animals. LAM PCR analysis of peripheral blood revealed stable oligo- to polyclonal hematopoiesis in 1st, 2nd and 3rd generation mice. Evidence of predominant clones or clonal exhaustion was not observed despite of up to 16 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice which had received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis. This is molecular proof that extensive self-renewal of transplantable stem cells had occurred in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K-expressing hematopoietic stem cells by repetitive chemotherapy does not affect differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies intending to employ amplification of a limited number of genetically modified clones in clinical gene therapy.


Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 485-491 ◽  
Author(s):  
Peter J. Gough ◽  
Elaine W. Raines

The use of retroviral gene transfer into hematopoietic stem cells for human gene therapy has been hampered by the absence of retroviral vectors that can generate long-lasting, lineage-specific gene expression. We developed self-inactivating retroviral vectors that incorporate gene-regulatory elements from the macrophage-restricted human CD68 gene. Through the transplantation of transduced murine hematopoietic stem cells (HSCs), we show that a vector incorporating a 342–base pair (bp) fragment of 5′ flanking sequence from the CD68 gene, in addition to the CD68 first intron, was able to direct macrophage-specific expression of an enhanced green fluorescent protein (EGFP) reporter gene in inflammatory cell exudates and lymphoid organs in vivo. Levels of EGFP expression generated by this vector were greater than those generated by a standard Moloney murine leukemia retroviral vector, and they were stable for at least a year after transplantation of transduced HSCs. To evaluate the ability of this vector to generate therapeutically useful levels of gene expression, we transplanted apolipoprotein E (ApoE)–deficient HSCs transduced with a virus encoding ApoE into ApoE-deficient mice. Macrophages from these mice expressed levels of ApoE that were comparable to those from wild-type mice, and vector-driven expression of ApoE in macrophages was sufficient to reverse both hypercholesterolemia and atherosclerotic lesion development. The future application of this retroviral vector should provide a powerful tool to further elucidate macrophage function and for human gene therapy.


Sign in / Sign up

Export Citation Format

Share Document