scholarly journals Preclinical Dose-Escalation Study of Intravitreal AAV-RS1 Gene Therapy in a Mouse Model of X-linked Retinoschisis: Dose-Dependent Expression and Improved Retinal Structure and Function

2016 ◽  
Vol 27 (5) ◽  
pp. 376-389 ◽  
Author(s):  
Ronald A. Bush ◽  
Yong Zeng ◽  
Peter Colosi ◽  
Sten Kjellstrom ◽  
Suja Hiriyanna ◽  
...  
2020 ◽  
Vol 18 ◽  
pp. 582-594
Author(s):  
Scott H. Greenwald ◽  
Emily E. Brown ◽  
Michael J. Scandura ◽  
Erin Hennessey ◽  
Raymond Farmer ◽  
...  

Gene Therapy ◽  
2021 ◽  
Author(s):  
Shagana Visuvanathan ◽  
Adam N. Baker ◽  
Pamela S. Lagali ◽  
Stuart G. Coupland ◽  
Garfield Miller ◽  
...  

2015 ◽  
Vol 24 (11) ◽  
pp. 3104-3118 ◽  
Author(s):  
Lucie P. Pellissier ◽  
Peter M. Quinn ◽  
C. Henrique Alves ◽  
Rogier M. Vos ◽  
Jan Klooster ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuewen Wu ◽  
Li Zhang ◽  
Yihui Li ◽  
Wenjuan Zhang ◽  
Jianjun Wang ◽  
...  

AbstractMutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


Sign in / Sign up

Export Citation Format

Share Document