The Presence of Local Mesenchymal Progenitor Cells in Human Degenerated Intervertebral Discs and Possibilities to Influence These In Vitro: A Descriptive Study in Humans

2013 ◽  
Vol 22 (5) ◽  
pp. 804-814 ◽  
Author(s):  
Helena Brisby ◽  
Nikolaos Papadimitriou ◽  
Camilla Brantsing ◽  
Peter Bergh ◽  
Anders Lindahl ◽  
...  

2009 ◽  
Vol 11 (9) ◽  
pp. 1264-1273 ◽  
Author(s):  
Pierre Cassiede ◽  
James E. Dennis ◽  
Felix Ma ◽  
Arnold I. Caplan


2014 ◽  
Vol 29 (4) ◽  
pp. 457-469 ◽  
Author(s):  
Federica Riva ◽  
Claudia Omes ◽  
Roberto Bassani ◽  
Rossella E Nappi ◽  
Giuliano Mazzini ◽  
...  


2003 ◽  
Vol 21 (3) ◽  
pp. 451-457 ◽  
Author(s):  
P. Angele ◽  
J. U. Yoo ◽  
C. Smith ◽  
J. Mansour ◽  
K. J. Jepsen ◽  
...  


2009 ◽  
Vol 27 (2) ◽  
pp. 208-215 ◽  
Author(s):  
Takashi Iwakura ◽  
Masahiko Miwa ◽  
Yoshitada Sakai ◽  
Takahiro Niikura ◽  
Sang Yang Lee ◽  
...  


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4105-4105
Author(s):  
Brenton Short ◽  
Emer Clarke ◽  
Terry Thomas ◽  
Allen C. Eaves ◽  
Albertus W. Wognum ◽  
...  

Abstract Adult mammalian bone marrow (BM) contains at least two distinct stem cell populations; the stem cells of the hemopoietic lineage and a second population termed mesenchymal stem cells (MSC) whose function is to maintain the non-hemopoietic BM elements as well as skeletal homeostasis. MSC have been implicated as potential targets in a range of cellular therapies for treatment of defects of both the hemopoietic and skeletal systems, and as vehicles for gene therapy. In order to evaluate the potential of these cells in various therapies, a pre-clinical animal model in which both the biology and potential therapeutic applications of these cells can be assessed is of fundamental importance. The goal of the current study was to develop a robust and reproducible method for the isolation of MSC from murine hemopoietic tissues. Tibiae and femurs harvested from C57BL6/J mice were gently crushed with a pestle to release the marrow. The bone fragments were subsequently cut into small pieces with a scalpel and digested in a solution containing 3mg/ml Type I collagenase to yield a population of compact bone (CB) derived cells. Mesenchymal progenitor cells (MPC) were detected using an in vitro assay for fibroblast-colony forming cells (CFU-F). CB cells were plated at 1000 or 5000 cells per cm2 in complete MesenCult™ medium for 12 days, after which CFU-F-derived colonies were enumerated. We show that CFU-F are present at a significantly higher frequency in mouse CB than in the BM (433±225 vs 11.7±3.5 colonies/106 cells respectively, n=3). Based on these data we developed a simple and robust immunomagnetic selection method to highly enrich MPC from mouse CB by depleting essentially all nucleated hemopoietic cells (CD45+) and red blood cells (Ter119+) using magnetic particles and antibodies to CD45 and Ter119, respectively. Target CD45−Ter119− cells initially comprised 1.1±0.5% (n=9) of the total CB fraction as assayed by FACS. Following depletion, CD45−Ter119− cells comprised 74.5±16% (n=6) of the cells and were enriched 205 fold for CFU-F compared to the starting population, with a CFU-F frequency of 1 per 11 cells plated, and a total CFU-F recovery of 57.9 ± 18.5%. Analysis of CD45−Ter119−Sca-1+ cells, a phenotype previously shown to enrich for MPC, revealed that these cells were enriched 50 fold following depletion, from 0.53±0.5 to 26.5±8.23% (n=3). The enriched MPCs cultured at low O2 tension were devoid of hemopoietic contaminants at passage 1 and 2 as shown by lack of CD45, Ter119 and CD11b expression. The cultured CB-derived MPCs were capable of extensive in vitro proliferation and maintained the ability to differentiate into cells of the osteogenic, adipogenic and chondrogenic lineages. Furthermore, irradiated cultured mesenchymal cells supported long-term culture-initiating cells (LTC-IC) in 4-week cultures of Sca-1+ BM cells under limiting dilution conditions, at frequencies similar to those detected using irradiated primary BM feeders (i.e. 1 per 1600). These data provide a rapid, reproducible method by which multipotent mesenchymal cells devoid of contaminating hemopoietic cells can be readily obtained from limited numbers of mice to study the biology of MSC as well as the use of these cells as therapeutic agents in a preclinical animal model.





2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Mark F. Pittenger ◽  
Dennis E. Discher ◽  
Bruno M. Péault ◽  
Donald G. Phinney ◽  
Joshua M. Hare ◽  
...  

AbstractThe terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.



2016 ◽  
Vol 161 (2) ◽  
pp. 224-227 ◽  
Author(s):  
G. N. Zyuz’kov ◽  
V. V. Zhdanov ◽  
E. V. Udut ◽  
L. A. Miroshnichenko ◽  
E. V. Simanina ◽  
...  


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuta Ueno ◽  
Keiko Fujisaki ◽  
Shoko Hosoda ◽  
Yusuke Amemiya ◽  
Shogo Okazaki ◽  
...  

AbstractThe spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin β receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.



Sign in / Sign up

Export Citation Format

Share Document