Mesenchymal Stem Cells Downregulate Articular Chondrocyte Differentiation in Noncontact Coculture Systems: Implications in Cartilage Tissue Regeneration

2013 ◽  
Vol 22 (11) ◽  
pp. 1657-1669 ◽  
Author(s):  
Lei Xu ◽  
Qi Wang ◽  
Feiyue Xu ◽  
Zhaoyang Ye ◽  
Yan Zhou ◽  
...  
2020 ◽  
Vol 10 (8) ◽  
pp. 2927
Author(s):  
Silvia Ravalli ◽  
Marta Anna Szychlinska ◽  
Giovanni Lauretta ◽  
Giuseppe Musumeci

Successful tissue regeneration therapies require further understanding of the environment in which the cells are destined to be set. The aim is to structure approaches that aspire to a holistic view of biological systems and to scientific reliability. Mesenchymal stem cells represent a valuable resource for cartilage tissue engineering, due to their chondrogenic differentiation capacity. Promoting chondrogenesis, not only by growth factors but also by exogenous enhancers such as biomechanics, represents a technical enhancement. Tribological evaluation of the articular joint has demonstrated how mechanical stimuli play a pivotal role in cartilage repair and participate in the homeostasis of this tissue. Loading stresses, physiologically experienced by chondrocytes, can upregulate the production of proteins like glycosaminoglycan or collagen, fundamental for articular wellness, as well as promote and preserve cell viability. Therefore, there is a rising interest in the development of bioreactor devices that impose compression, shear stress, and hydrostatic pressure on stem cells. This strategy aims to mimic chondrogenesis and overcome complications like hypertrophic phenotyping and inappropriate mechanical features. This review will analyze the dynamics inside the joint, the natural stimuli experienced by the chondrocytes, and how the biomechanical stimuli can be applied to a stem cell culture in order to induce chondrogenesis.


2017 ◽  
Vol 9 (10) ◽  
pp. 8589-8601 ◽  
Author(s):  
Fanyi Li ◽  
Vinh X. Truong ◽  
Helmut Thissen ◽  
Jessica E. Frith ◽  
John S. Forsythe

2011 ◽  
Vol 28 (6) ◽  
pp. 1395-1405 ◽  
Author(s):  
Nathaniel S. Hwang ◽  
Sung Gap Im ◽  
Patrick B. Wu ◽  
David A. Bichara ◽  
Xing Zhao ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sevda Pouraghaei Sevari ◽  
Sahar Ansari ◽  
Alireza Moshaverinia

AbstractTissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.


Sign in / Sign up

Export Citation Format

Share Document