From “Bench to Bedside”: Current Advancement on Large-Scale Production of Mesenchymal Stem Cells

2017 ◽  
Vol 26 (22) ◽  
pp. 1662-1673 ◽  
Author(s):  
Varitsara Bunpetch ◽  
Haoyu Wu ◽  
Shufang Zhang ◽  
Hongwei Ouyang
2012 ◽  
Vol 59 (2) ◽  
pp. 106-120 ◽  
Author(s):  
Sunghoon Jung ◽  
Krishna M. Panchalingam ◽  
Reynold D. Wuerth ◽  
Lawrence Rosenberg ◽  
Leo A. Behie

Hepatology ◽  
2020 ◽  
Vol 72 (1) ◽  
pp. 257-270 ◽  
Author(s):  
Kerstin Schneeberger ◽  
Natalia Sánchez‐Romero ◽  
Shicheng Ye ◽  
Frank G. Steenbeek ◽  
Loes A. Oosterhoff ◽  
...  

2008 ◽  
pp. 110306231138043
Author(s):  
Francesco D'andrea ◽  
Francesco De Francesco ◽  
Giuseppe A. Ferraro ◽  
Vincenzo Desiderio ◽  
Virginia Tirino ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Thomas Moreau ◽  
Amanda L. Evans ◽  
Louella Vasquez ◽  
Marloes R. Tijssen ◽  
Ying Yan ◽  
...  

Abstract The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.


Sign in / Sign up

Export Citation Format

Share Document