Comparison of Immunological Properties of Bone Marrow Stromal Cells and Adipose Tissue?Derived Stem Cells Before and After Osteogenic Differentiationin Vitro

2006 ◽  
Vol 0 (0) ◽  
pp. 061220075423031
Author(s):  
Philipp Niemeyer ◽  
Martin Kornacker ◽  
Alexander Mehlhorn ◽  
Anja Seckinger ◽  
Jana Vohrer ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Daphne de Camargo Reis Mello ◽  
Lais Morandini Rodrigues ◽  
Fabia Zampieri D’Antola Mello ◽  
Thais Fernanda Gonçalves ◽  
Bento Ferreira ◽  
...  

Abstract Background An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts. Methods Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test. Results All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples. Conclusion Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2433-2433
Author(s):  
Medhat Shehata ◽  
Rainer Hubmann ◽  
Martin Hilgarth ◽  
Susanne Schnabl ◽  
Dita Demirtas ◽  
...  

Abstract Abstract 2433 Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of B lymphocytes which typically express CD19 and CD5. The disease remains incurable and recurrence often occurs after current standard therapies due to residual disease or probably due to the presence of therapy-resistant CLL precursors. Based on the growing evidence for the existence of leukemia stem cells, this study was designed to search for putative CLL precursors/stem cells based on the co-expression of CLL cell markers (CD19/CD5) with the hematopoietic stem cell marker (CD34). Forty seven CLL patients and 17 healthy persons were enrolled in the study. Twenty four patients had no previous treatment and 23 had pre-therapy. Twenty two patients were in Binet stage C and 25 patients in B. Twenty two patients had unmutated and 18 mutated IgVH gene (7: ND). Cytogenetic analysis by FISH showed that 14 patients had del 13q, 8 had del 11q, 4 had del 17p and 9 had trisomy 12. Peripheral blood and bone marrow mononuclear cells were subjected to multi-colour FACS analysis using anti-human antibodies against CD34, CD19 and CD5 surface antigens. The results revealed the presence of triple positive CD34+/CD19+/CD5+ cells in CLL samples (mean 0.13%; range 0.01–0.41) and in healthy donors (0.31%; range 0.02–0.6) within the CD19+ B cells. However, due to the high leukocyte count in CLL patients, the absolute number of these cells was significantly higher in CLL samples (mean: 78.7; range 2.5–295 cells /μL blood) compared to healthy persons (mean: 0.45: range 0.04–2.5 cells/μl)(p<0,001). These triple positive “putative CLL stem cells” (PCLLSC) co-express CD133 (67%), CD38 (87%), CD127 (52%), CD10 (49%), CD20 (61%), CD23 (96%), CD44 (98%) and CD49d (74%). FISH analysis on 4 patients with documented chromosomal abnormalities detected the corresponding chromosomal aberrations of the mature clone in the sorted CD34+/CD5+/CD19+ and/or CD34+/CD19-/CD5- cells but not in the CD3+ T cells. Multiplex RT-PCR analysis using IgVH family specific primer sets confirmed the clonality of these cells. Morphologically, PCLLSC appeared larger than lymphocytes with narrow cytoplasm and showed polarity and motility in co-culture with human bone marrow stromal cells. Using our co-culture microenvironment model (Shehata et al, Blood 2010), sorted cell fractions (A: CD34+/19+/5+, B: CD34+/19-/5- or C: CD34-/CD19+/5+) from 4 patients were co-cultured with primary autologous human stromal cells. PCLLSC could be expanded in the co-culture to more than 90% purity from fraction A and B but not from fraction C. These cells remained in close contact or migrated through the stromal cells. PCLLSC required the contact with stromal cells for survival and died within 1–3 days in suspension culture suggesting their dependence on bone marrow microenvironment or stem cell niches. RT-PCR demonstrated that these cells belong to the established CLL clone. They also eexpress Pax5, IL-7R, Notch1, Notch2 and PTEN mRNA which are known to play a key role in the early stages of B cells development and might be relevant to the early development of the malignant clone in CLL. Using NOD/SCID/IL2R-gamma-null (NOG) xenogeneic mouse system we co-transplanted CLL cells from 3 patients (5 million PBMC/mouse) together with autologous bone marrow stromal cells (Ratio: 10:1). The percentage of PCLLSC in the transplanted PBMC was 0.18% (range 0.06–0.34%). Using human-specific antibodies, human CD45+ cells were detected in peripharal blood of the mice (mean 0.9 % range 0.47–1.63%) after 2 months of transplantation. More than 90% of the human cells were positive for CD45 and CD5. Among this population, 26% (range 15–35%) of the cells co-expressed CD45, CD19, CD5 and CD34 and thus correspond to the PCLLSC. In conclusion, our data suggest the existence of putative CLL precursors/stem cells which reside within the CD34+ hematopoietic stem cell compartment and carry the chromosomal aberrations of the established CLL clone. These cells could be expanded in vitro in a bone marrow stroma-dependent manner and could be engrafted and significantly enriched in vivo in NOG xenotransplant system. Further characterization and selective targeting and eradication of these cells may pave the way for designing curative therapeutic strategies for CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4987-4987
Author(s):  
Hiroshi Ikeda ◽  
Yuka Aoki ◽  
Nasanori Nojima ◽  
Hiroshi Yasui ◽  
Toshiaki Hayashi ◽  
...  

Abstract Abstract 4987 The Bone marrow (BM) microenvironment plays crucial role in pathogenesis of Multiple myeloma(MM). Myeloma cells contacts with bone marrow stromal cells (BMSCs), which secrete factors/cytokines, promoting tumor cell growth and survival. Paracrine secretion of cytokines(i. e., interleukin-6 (IL-6) insulin-like growth factor-1, inflammatory protein-1a) in BM stromal cells promotes multiple myeloma cell proliferation and protects against drug-induced cytotoxicity. These cytokines provide stimulatory signals for multiple myeloma growth and survival. Bone involvement is a common feature in MM patient, solid and hematologic cancers. MM localizes to the bone in nearly all patients ranges between 40% and 75%. Disease-related skeletal complications result in significant morbidity due to pain, pathologic fractures and spinal cord compression. The bone microenvironment creates a supportive niche for tumor growth. Osteoclasts and bone marrow stromal cells, along with extracellular matrix and cytokines stimulate tumor cell proliferation and confer chemoresistance. Therefore, the reciprocal interactions between tumor cells, osteoclasts, osteoblasts, and bone marrow stromal cells present an important. In current study, monocyte can directly promote mesenchymal stem cells osteogenic differentiation through cell contact interactions, thus resulting in the production of osteogenic factors by the monocytes. This mechanism is mediated by the activation of STAT3 signaling pathway in the mesechymal stem cells that leads to the upregulation of Osteoblasts-associated genes such as Runx2 and alkaline phosphatase (ALP), and the down-regulation of inhibitors such as DKK1 to drive the differentiation of mesechymal stem cells into osteoblasts. In this study, we examined the role of monocyte, component of BM cells, as a potential niche component that supports myeloma cells. We investigated the proliferation of MM cell lines cultured alone or co-cultured with BM stromal cells, monocytes, or a combination of BM stromal cells and monocytes. Consistently, we observed increased proliferation of MM cell lines in the presence of either BM stromal cells or monocytes compared to cell line-only control. Furthermore, the co-culture of BM stromal cells plus monocytes induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, BMSCs and monocytes decreased the rate of apoptosis of myeloma cells. Our results therefore suggest that highlights the role of monocyte as an important component of the BM microenvironment. Disclosures: No relevant conflicts of interest to declare.


Stem Cells ◽  
2005 ◽  
Vol 23 (10) ◽  
pp. 1626-1633 ◽  
Author(s):  
Frédérique Hubin ◽  
Chantal Humblet ◽  
Zakia Belaid ◽  
Charles Lambert ◽  
Jacques Boniver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document