Addition of Hyaluronic Acid to Alginate Embedded Chondrocytes Interferes with Insulin-like Growth Factor-1 Signaling In Vitro and In Vivo

2009 ◽  
Vol 15 (11) ◽  
pp. 3449-3459 ◽  
Author(s):  
Diana M. Yoon ◽  
Shane Curtiss ◽  
A. Hari Reddi ◽  
John P. Fisher
2004 ◽  
Vol 48 (1) ◽  
pp. 183-195 ◽  
Author(s):  
Cecília H.A. Gouveia

O hormônio tiroideano é essencial para o desenvolvimento, maturação e metabolismo ósseos normais. Durante o desenvolvimento, a deficiência do hormônio tiroideano resulta em atraso na maturação do esqueleto e disgênese das epífises, resultando em redução do crescimento e anormalidades esqueléticas. O hormônio tiroideano também tem efeito no osso do adulto. A tirotoxicose é freqüentemente associada ao aumento do metabolismo ósseo e diminuição da massa óssea. Embora a importância do hormônio tiroideano no desenvolvimento e metabolismo ósseos seja clara, os mecanismos que medeiam os efeitos desse hormônio no tecido ósseo apenas começam a ser desvendados. O hormônio tiroideano pode atuar indiretamente no esqueleto, aumetando a secreção de hormônio do crescimento (GH) e insulin-like growth factor-1 (IGF-1); ou diretamente, modulando genes alvo via receptores nucleares específicos. Não se sabe, entretanto, se os principais efeitos do hormônio tiroideano no osso são resultado de ações diretas ou indiretas. Achados in vitro, tais como a presença de receptores de hormônio tiroideano (TR) e a indução de genes e proteínas em células esqueléticas pelo hormônio tiroideano, evidenciam a importância de ações diretas. Esta revisão tem como meta sumarizar os achados in vivo e in vitro relacionados aos efeitos do hormônio tiroideano no esqueleto.


2021 ◽  
pp. 088532822110618
Author(s):  
Lalita Mehra ◽  
Smritee Mehra ◽  
Nidhi Tiwari ◽  
Thakuri Singh ◽  
Harish Rawat ◽  
...  

Burn induced injuries are commonly encountered in civilian and military settings, leading to severe morbidity and mortality. Objective of this study was to construct microporous bioactive scaffolds of gelatin-hyaluronic acid suffused with aloe-vera gel (Gela/HA/AvG), and to evaluate their efficacy in healing partial-thickness burn wounds. Scaffolds were characterized using Fourier transform-infrared spectroscopy, Scanning electron microscopy, and Thermo-gravimetric analysis to understand intermolecular interactions and morphological characteristics. In-vitro fluid uptake ability and hemolytic index of test scaffolds were also determined. In-vitro collagenase digestion was done to assess biodegradability of scaffolds. Wound retraction studies were carried out in Sprague Dawley rats inflicted with partial-thickness burn wounds to assess and compare efficacy of optimized scaffolds with respect to negative and positive control groups. In-vivo gamma scintigraphy using Technetium-99m labeled Immunoglobulin-G ( 99m Tc-IgG) as imaging agent was also performed to validate efficacy results. Histological and immunohistochemical comparison between groups was also made. Scaffolds exhibited mircoporous structure, with pore size getting reduced from 41.3 ± 4.3 µm to 30.49 ± 5.7 µm when gelatin conc. was varied from 1% to 5%. Optimized test scaffolds showed sustained in-vitro swelling behavior, were biodegradable and showed hemolytic index in range of 2.4–4.3%. Wound retraction study along with in-vivo gamma scintigraphy indicated that Gela/HA/AvG scaffolds were not only able to reduce local inflammation faster but also accelerated dermis regeneration. Immunohistochemical analysis, in terms of expression levels of epidermal growth factor and fibroblast growth factor-2 also corroborated in-vivo efficacy findings. Gela/HA/AvG scaffolds, therefore, can potentially be developed into an effective dermal regeneration template for partial-thickness burn wounds.


Author(s):  
Francesco Travascio ◽  
Chun Yuh Huang ◽  
Wei Yong Gu

The intervertebral disc (IVD), being the largest avascular structure in human body, receives nourishment from the vascular network present near its periannular surface and at cartilage endplates (CEPs). It is believed that insufficient nutritional supply is a major cause for disc degeneration [1]. Understanding the mechanisms of solute transport in IVD is crucial for elucidating the etiology of disc degeneration, and to develop strategies for tissue repair (in vivo), and tissue engineering (in vitro). Transport in IVD is complex and involves a series of electromechanical, chemical, and biological coupled events. This study focused on the implications of solute-tissue reversible binding reactions on transport phenomena in the disc. A two dimensional (2D) finite element model was developed to predict diffusive-reactive transport in IVD. The numerical model was used to simulate transport of insulin-like growth factor 1 (IGF-1) in IVD, in the presence of binding interactions between IGF-1 and IGF-binding proteins (IGFBP-3) located on the extracellular matrix (ECM) of the disc.


1999 ◽  
Vol 84 (11) ◽  
pp. 4172-4177 ◽  
Author(s):  
J. S. Moore ◽  
J. P. Monson ◽  
G. Kaltsas ◽  
P. Putignano ◽  
P. J. Wood ◽  
...  

The interconversion of hormonally active cortisol (F) and inactive cortisone (E) is catalyzed by two isozymes of 11β-hydroxysteroid dehydrogenase (11βHSD), an oxo-reductase converting E to F (11βHSD1) and a dehydrogenase (11βHSD2) converting F to E. 11βHSD1 is important in mediating glucocorticoid-regulated glucose homeostasis and regional adipocyte differentiation. Earlier studies conducted with GH-deficient subjects treated with replacement GH suggested that GH may modulate 11βHSD1 activity. In 7 acromegalic subjects withdrawing from medical therapy (Sandostatin-LAR; 20–40 mg/month for at least 12 months), GH rose from 7.1 ± 1.5 to 17.5 ± 4.3 mU/L (mean ± se), and insulin-like growth factor I (IGF-I) rose from 43.0 ± 8.8 to 82.1 ± 13.7 nmol/L (both P < 0.05) 4 months after treatment. There was a significant alteration in the normal set-point of F to E interconversion toward E. The fall in the urinary tetrahydrocortisols/tetrahydocortisone ratio (THF+allo-THF/THE; 0.82 ± 0.06 to 0.60 ± 0.06; P < 0.02) but unaltered urinary free F/urinary free E ratio (a marker for 11βHSD2 activity) suggested that this was due to inhibition of 11βHSD1 activity. An inverse correlation between GH and the THF+allo-THF/THE ratio was observed (r = −0.422; P < 0.05). Conversely, in 12 acromegalic patients treated by transsphenoidal surgery (GH falling from 124 ± 49.2 to 29.3 ± 15.4 mU/L; P < 0.01), the THF+allo-THF/THE ratio rose from 0.53 ± 0.06 to 0.63 ± 0.07 (P < 0.05). Patients from either group who failed to demonstrate a change in GH levels showed no change in the THF+allo-THF/THE ratio. In vitro studies conducted on cells stably transfected with either the human 11βHSD1 or 11βHSD2 complementary DNA and primary cultures of human omental adipose stromal cells expressing only the 11βHSD1 isozyme indicated a dose-dependent inhibition of 11βHSD1 oxo-reductase activity with IGF-I, but not GH. Neither IGF-I nor GH had any effect on 11βHSD2 activity. GH, through an IGF-I-mediated effect, inhibits 11βHSD1 activity. This reduction in E to F conversion will increase the MCR of F, and care should be taken to monitor the adequacy of function of the hypothalamo-pituitary-adrenal axis in acromegalic subjects and in GH-deficient, hypopituitary patients commencing replacement GH therapy. Conversely, enhanced E to F conversion occurs with a reduction in GH levels; in liver and adipose tissue this would result in increased hepatic glucose output and visceral adiposity, suggesting that part of the phenotype currently attributable to adult GH deficiency may be an indirect consequence of its effect on tissue F metabolism via 11βHSD1 expression.


Sign in / Sign up

Export Citation Format

Share Document