Evaluation of a Thermoresponsive Polycaprolactone Scaffold for In Vitro Three-Dimensional Stem Cell Differentiation

2015 ◽  
Vol 21 (1-2) ◽  
pp. 310-319 ◽  
Author(s):  
Veronika Hruschka ◽  
Aram Saeed ◽  
Paul Slezak ◽  
Racha Cheikh Al Ghanami ◽  
Georg Alexander Feichtinger ◽  
...  
2011 ◽  
Vol 31 (8) ◽  
pp. 1842-1852 ◽  
Author(s):  
Qingzhong Xiao ◽  
Gang Wang ◽  
Xiaoke Yin ◽  
Zhenling Luo ◽  
Andriani Margariti ◽  
...  

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Jinkyu Lee ◽  
Sangmin Lee ◽  
Sung Min Kim ◽  
Heungsoo Shin

Abstract Background Fabrication of three-dimensional stem cell spheroids have been studied to improve stem cell function, but the hypoxic core and limited penetration of nutrients and signaling cues to the interior of the spheroid were challenges. The incorporation of polymers such as silica and gelatin in spheroids resulted in relatively relaxed assembly of composite spheroids, and enhancing transport of nutrient and biological gas. However, because of the low surface area between cells and since the polymers were heterogeneously distributed throughout the spheroid, these polymers cannot increase the cell to extracellular matrix interactions needed to support differentiation. Methods We developed the stem cell spheroids that incorporate poly(ι-lactic acid) single-segmented fibers synthesized by electrospinning and physical and chemical fragmentation. The proper mixing ratio was 2000 cells/μg fibers (average length of the fibers was 50 μm - 100 μm). The SFs were coated with polydopamine to increase cell binding affinity and to synthesize various-sized spheroids. The function of spheroids was investigated by in vitro analysis depending on their sizes. For statistical analysis, Graphpad Prism 5 software (San Diego, CA, USA) was used to perform one-way analysis of variance ANOVA with Tukey’s honest significant difference test and a Student’s t-test (for two variables) (P < 0.05). Results Spheroids of different sizes were created by modulating the amount of cells and fibers (0.063 mm2–0.322 mm2). The fibers in the spheroid were homogenously distributed and increased cell viability, while cell-only spheroids showed a loss of DNA contents, internal degradation, and many apoptotic signals. Furthermore, we investigated stemness and various functions of various-sized fiber-incorporated spheroids. In conclusion, the spheroid with the largest size showed the greatest release of angiogenic factors (released VEGF: 0.111 ± 0.004 pg/ng DNA), while the smallest size showed greater effects of osteogenic differentiation (mineralized calcium: 18.099 ± 0.271 ng/ng DNA). Conclusion The spheroids incorporating polydopamine coated single-segmented fibers showed enhanced viability regardless of sizes and increased their functionality by regulating the size of spheroids which may be used for various tissue reconstruction and therapeutic applications.


2017 ◽  
Vol 8 (1) ◽  
pp. e2568-e2568 ◽  
Author(s):  
Francesca Paino ◽  
Marcella La Noce ◽  
Diego Di Nucci ◽  
Giovanni Francesco Nicoletti ◽  
Rosa Salzillo ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Quyen A. Tran ◽  
Visar Ajeti ◽  
Brian T. Freeman ◽  
Paul J. Campagnola ◽  
Brenda M. Ogle

Developmental studies and 3D in vitro model systems show that the production and engagement of extracellular matrix (ECM) often precede stem cell differentiation. Yet, unclear is how the ECM triggers signaling events in sequence to accommodate multistep process characteristic of differentiation. Here, we employ transcriptome profiling and advanced imaging to delineate the specificity of ECM engagement to particular differentiation pathways and to determine whether specificity in this context is a function of long-term ECM remodeling. To this end, human mesenchymal stem cells (hMSCs) were cultured in 3D bioprinted prisms created from ECM proteins and associated controls. We found that exogenous ECM provided in 3D microenvironments at early time points impacts on the composition of microenvironments at later time points and that each evolving 3D microenvironment is uniquely poised to promote stem cell differentiation. Moreover, 2D cultures undergo minimal ECM remodeling and are ill-equipped to stimulate pathways associated with development.


Sign in / Sign up

Export Citation Format

Share Document