Three-dimensional idiopathic pulmonary fibrosis model using a layer-by-layer cell coating technique

Author(s):  
Hidenori Kuno ◽  
Takami Akagi ◽  
Eriko Fukui ◽  
Hiroyuki Yamato ◽  
Mitsuru Akashi ◽  
...  
Biomaterials ◽  
2017 ◽  
Vol 133 ◽  
pp. 263-274 ◽  
Author(s):  
Kazuki Sasaki ◽  
Takami Akagi ◽  
Tadafumi Asaoka ◽  
Hidetoshi Eguchi ◽  
Yasunari Fukuda ◽  
...  

Biomaterials ◽  
2018 ◽  
Vol 160 ◽  
pp. 82-91 ◽  
Author(s):  
Yasunari Fukuda ◽  
Takami Akagi ◽  
Tadafumi Asaoka ◽  
Hidetoshi Eguchi ◽  
Kazuki Sasaki ◽  
...  

2021 ◽  
Author(s):  
Yuko Tanaka ◽  
Yuzo Suzuki ◽  
Hirotsugu Hasegawa ◽  
Koshi Yokomura ◽  
Atsuki Fukada ◽  
...  

Abstract Background: The assessment of lung physiology via pulmonary function tests (PFTs) is essential for patients with idiopathic pulmonary fibrosis (IPF). However, PFTs require active participation, which can be challenging for patients with severe respiratory failure, such as during acute exacerbations (AE) of IPF. Recently advances enabled to re-construct of 3-dimensional computed-tomography (3D-CT) images. Methods: This is a retrospective multi-center cohort study. This study established a standardisation method and quantitative analysis of lung volume (LV) based on anthropometry using three-dimensional computed tomography (3D-CT) images. The standardised 3D-CT LV in patients with IPF at diagnosis (n=140) and during AE (cohort1; n=61 and cohort2; n=50) and those of controls (n=53) were measured. Results: The standardised 3D-CT LVs at IPF diagnosis were less than those of control patients, especially in the lower lung lobes. The standardised 3D-CT LVs were correlated with forced vital capacity (FVC) and validated using the modified Gender-Age-Physiology (GAP) index. The standardised 3D-CT LVs at IPF diagnosis were independently associated with prognosis. During AE, PFTs were difficult to perform, 3D-CT analyses revealed reduced lung capacity in both the upper and lower lobes compared to those obtained at diagnosis. Lower standardised 3D-CT LVs during AE were independently associated with worse outcomes in independent two cohorts. Particularly, volume loss in the upper lobe at AE had prognostic values.Conclusion: A novel image quantification method for assessing pulmonary physiology using standardised 3D-CT-derived LVs was developed. This method successfully predicts mortality in patients with IPF and AE of IPF, and may be a useful alternative to PFTs when PFTs cannot be performed.


JCI Insight ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Mark G. Jones ◽  
Aurélie Fabre ◽  
Philipp Schneider ◽  
Francesco Cinetto ◽  
Giacomo Sgalla ◽  
...  

2020 ◽  
Vol 318 (2) ◽  
pp. L276-L286 ◽  
Author(s):  
Marisa Tisler ◽  
Samuel Alkmin ◽  
Hsin-Yu Chang ◽  
Jon Leet ◽  
Ksenija Bernau ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is characterized by a profound remodeling of the collagen in the extracellular matrix (ECM), where the fibers become both denser and more highly aligned. However, it is unknown how this reconfiguration of the collagen matrix affects disease progression. Here, we investigate the role of specific alterations in collagen fiber organization on cell migration dynamics by using biomimetic image-based collagen scaffolds representing normal and fibrotic lung, where the designs are derived directly from high-resolution second harmonic generation microscopy images. The scaffolds are fabricated by multiphoton-excited (MPE) polymerization, where the process is akin to three-dimensional printing, except that it is performed at much greater resolution (∼0.5 microns) and with collagen and collagen analogs. These scaffolds were seeded with early passaged primary human normal and IPF fibroblasts to enable the decoupling of the effect of cell-intrinsic characteristics (normal vs. IPF) versus ECM structure (normal vs. IPF) on migration dynamics. We found that the highly aligned IPF collagen structure promoted enhanced cell elongation and F-actin alignment along with increased cell migration speed and straightness relative to the normal tissues. Collectively, the data are consistent with an enhanced contact guidance mechanism on the aligned IPF matrix. Although cell intrinsic effects were observed, the aligned collagen matrix morphology had a larger effect on these metrics. Importantly, these biomimetic models of the lung cannot be synthesized by conventional fabrication methods. We suggest that the MPE image-based fabrication method will enable additional hypothesis-based testing studies of cell-matrix interactions in the context of tissue fibrosis.


Sign in / Sign up

Export Citation Format

Share Document