1995 ◽  
Vol 10 (19) ◽  
pp. 2783-2797 ◽  
Author(s):  
J. BECKERS ◽  
N. DEBERGH

Results coming from the study of relativistic vector mesons interacting with a constant magnetic field are examined through Johnson-Lippmann implications on one-dimensional oscillatorlike systems. We obtain specific nonrelativistic Hamiltonians showing new properties in quantum mechanics and leading to superpositions of bosons and pseudofermions. Moreover, two “potentials” are introduced and discussed in comparison with recent developments usually obtained in p=2 parasupersymmetric quantum mechanics. Pseudofermions are also examined, particularly with respect to orthofermions.


2020 ◽  
Author(s):  
Jong-hoon Lee

When gravity exists in magnetic fields, gravity interacts with magnetic fields to generate electricity Earth direction or opposite direction. In this experiment, we demonstrate it and explain why need the renormalization theory. And in this experimental model, the relationship between electricity, voltage and time were redefined through the analysis of data for 0.1 second. Voltage and time are in a 1: 1 matching relationship. The voltage can be recorded on the x-axis and time on the y-axis. It explains two expressions of the Schrödinger equation. According to these experiments, the electric potential energy generated in gravity and magnetic fields is not reflected in quantum mechanics. The renormalization theory has modified the quantum mechanics in four-dimensional systems. If gravity and electromagnetic force are particles, they are in a symmetrical balance of supersymmetric particles in the gravity generator. Gravity generator was voltage (0) and electricity (0) in Excel 6380 data of experiment F4 when it was in equilibrium state in the direction of the Earth by gravity force and in the opposite direction by the magnetic repulsive force.


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 53
Author(s):  
George Heald ◽  
Sui Mao ◽  
Valentina Vacca ◽  
Takuya Akahori ◽  
Ancor Damas-Segovia ◽  
...  

The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 471 ◽  
Author(s):  
Ali Mostafazadeh

A non-Hermitian operator H defined in a Hilbert space with inner product ⟨ · | · ⟩ may serve as the Hamiltonian for a unitary quantum system if it is η -pseudo-Hermitian for a metric operator (positive-definite automorphism) η . The latter defines the inner product ⟨ · | η · ⟩ of the physical Hilbert space H η of the system. For situations where some of the eigenstates of H depend on time, η becomes time-dependent. Therefore, the system has a non-stationary Hilbert space. Such quantum systems, which are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a conflict between the unitarity of time evolution and the unobservability of the Hamiltonian. Their proper treatment requires a geometric framework which clarifies the notion of the energy observable and leads to a geometric extension of quantum mechanics (GEQM). We provide a general introduction to the subject, review some of the recent developments, offer a straightforward description of the Heisenberg-picture formulation of the dynamics for quantum systems having a time-dependent Hilbert space, and outline the Heisenberg-picture formulation of dynamics in GEQM.


2007 ◽  
Vol 3 (S250) ◽  
pp. 577-586 ◽  
Author(s):  
Rich Townsend ◽  
David H. Cohen ◽  
Luc Dessart ◽  
Swetlana Hubrig ◽  
Yaël Nazé ◽  
...  

AbstractMagnetic fields are unexpected in massive stars, due to the absence of a sub-surface convective dynamo. However, advances in instrumentation over the past three decades have led to their detection in a small but growing subset of these stars. Moreover, complementary theoretical developments have highlighted their potentially significant influence over the structure, evolution and circumstellar environments of massive stars. Here, we summarize a special session convened prior to the main conference, focused on presenting recent developments in the study of massive-star magnetic fields.


2004 ◽  
Vol 19 (23) ◽  
pp. 1733-1744 ◽  
Author(s):  
JOSÉ M. ISIDRO

On classical phase spaces admitting just one complex-differentiable structure, there is no indeterminacy in the choice of the creation operators that create quanta out of a given vacuum. In these cases the notion of a quantum is universal, i.e. independent of the observer on classical phase space. Such is the case in all standard applications of quantum mechanics. However, recent developments suggest that the notion of a quantum may not be universal. Transformations between observers that do not agree on the notion of an elementary quantum are called dualities. Classical phase spaces admitting more than one complex-differentiable structure thus provide a natural framework to study dualities in quantum mechanics. As an example we quantise a classical mechanics whose phase space is a torus and prove explicitly that it exhibits dualities.


Sign in / Sign up

Export Citation Format

Share Document