FROM RELATIVISTIC VECTOR MESONS IN CONSTANT MAGNETIC FIELDS TO NONRELATIVISTIC (PSEUDO)SUPERSYMMETRIES

1995 ◽  
Vol 10 (19) ◽  
pp. 2783-2797 ◽  
Author(s):  
J. BECKERS ◽  
N. DEBERGH

Results coming from the study of relativistic vector mesons interacting with a constant magnetic field are examined through Johnson-Lippmann implications on one-dimensional oscillatorlike systems. We obtain specific nonrelativistic Hamiltonians showing new properties in quantum mechanics and leading to superpositions of bosons and pseudofermions. Moreover, two “potentials” are introduced and discussed in comparison with recent developments usually obtained in p=2 parasupersymmetric quantum mechanics. Pseudofermions are also examined, particularly with respect to orthofermions.

1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


1992 ◽  
Vol 06 (21) ◽  
pp. 3525-3537 ◽  
Author(s):  
V. BARONE ◽  
V. PENNA ◽  
P. SODANO

The quantum mechanics of a particle moving on a pseudosphere under the action of a constant magnetic field is studied from an algebraic point of view. The magnetic group on the pseudosphere is SU(1, 1). The Hilbert space for the discrete part of the spectrum is investigated. The eigenstates of the non-compact operators (the hyperbolic magnetic translators) are constructed and shown to be expressible as continuous superpositions of coherent states. The planar limit of both the algebra and the eigenstates is analyzed. Some possible applications are briefly outlined.


1999 ◽  
Vol 14 (04) ◽  
pp. 481-503 ◽  
Author(s):  
T. INAGAKI ◽  
S. D. ODINTSOV ◽  
YU. I. SHIL'NOV

We investigate the effects of the external gravitational and constant magnetic fields to the dynamical symmetry breaking. As simple models of the dynamical symmetry breaking we consider the Nambu–Jona-Lasinio (NJL) model and the supersymmetric Nambu–Jona-Lasinio (SUSY NJL) model nonminimally interacting with the external gravitational field and minimally interacting with constant magnetic field. The explicit expressions for the scalar and spinor Green functions are found to the first order in the space–time curvature and exactly for a constant magnetic field. We obtain the effective potential of the above models from the Green functions in the magnetic field in curved space–time. Calculating the effective potential numerically with the varying curvature and/or magnetic fields we show the effects of the external gravitational and magnetic fields to the phase structure of the theories. In particular, increase of the curvature in the spontaneously broken phase of the chiral symmetry due to the fixed magnetic field makes this phase to be less broken. At the same time the strong magnetic field quickly induces chiral symmetry breaking even in the presence of fixed gravitational field within the nonbroken phase.


2014 ◽  
Vol 1003 ◽  
pp. 85-90
Author(s):  
Lin Lv ◽  
Jian Hui Yang

To investigate the effect of constant magnetic fields on bone deformation, 16 rabbits were randomly divided into the control group and the experimental group. Biological materials with effect of constant magnetic field were attached to the hind legs of rabbits in the experimental group for a period of 4 months. Rabbit bones were periodically measured and compared. Results showed that compared with the control group, rabbits in the experimental group exhibited significant bone growth, indicating that constant magnetic field may significantly activate bone growth in rabbits.


Author(s):  
L.J Silvers

Magnetic fields are known to reside in many astrophysical objects and are now believed to be crucially important for the creation of phenomena on a wide variety of scales. However, the role of the magnetic field in the bodies that we observe has not always been clear. In certain situations, the importance of a magnetic field has been overlooked on the grounds that the large-scale magnetic field was believed to be too weak to play an important role in the dynamics. In this article I discuss some of the recent developments concerning magnetic fields in stars, planets and accretion discs. I choose to emphasize some of the situations where it has been suggested that weak magnetic fields may play a more significant role than previously thought. At the end of the article, I list some of the questions to be answered in the future.


1996 ◽  
Vol 10 (23) ◽  
pp. 1141-1149 ◽  
Author(s):  
CHOON-LIN HO ◽  
V.R. KHALILOV ◽  
CHI YANG

We obtain the equations that define the equilibrium of a homogeneous relativistic gas of neutrons, protons and electrons in a constant magnetic field as applied to the conditions that probably occur near the center of neutron stars. We compute the relative densities of the particles at equilibrium and the Fermi momentum of electrons in the strong magnetic field as function of the density of neutrons and the magnetic field induction. Novel features are revealed as to the ratio of the number of protons to the number of neutrons at equilibrium in the presence of large magnetic fields.


Author(s):  
Duncan H. Mackay

Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research.


2003 ◽  
Vol 18 (02) ◽  
pp. 271-292 ◽  
Author(s):  
C. QUESNE ◽  
N. VANSTEENKISTE

Pseudosupersymmetric quantum mechanics (PsSSQM), based upon the use of pseudofermions, was introduced in the context of a new Kemmer equation describing charged vector mesons interacting with an external constant magnetic field. Here we construct the complete explicit solution for its realization in terms of two superpotentials, both equal or unequal. We prove that any orthosupersymmetric quantum mechanical system has a pseudosupersymmetry and give conditions under which a pseudosupersymmetric one may be described by orthosupersymmetries of order two. We propose two new matrix realizations of PsSSQM in terms of the generators of a generalized deformed oscillator algebra (GDOA) and relate them to the cases of equal or unequal superpotentials, respectively. We demonstrate that these matrix realizations are fully reducible and that their irreducible components provide two distinct sets of bosonized operators realizing PsSSQM and corresponding to nonlinear spectra. We relate such results to some previous ones obtained for a GDOA connected with a C3-extended oscillator algebra (where C3 = ℤ3) in the case of linear spectra.


Sign in / Sign up

Export Citation Format

Share Document