scholarly journals Sobolev-type lower bounds on $\parallel \nabla \psi \parallel ^{2}$ for arbitrary regions in two-dimensional Euclidean space

1976 ◽  
Vol 34 (2) ◽  
pp. 200-202 ◽  
Author(s):  
Gerald Rosen
2017 ◽  
Vol 0 (0) ◽  
Author(s):  
Taiga Kumagai

AbstractWe investigate the asymptotic behavior of solutions of Hamilton–Jacobi equations with large Hamiltonian drift terms in an open subset of the two-dimensional Euclidean space. The drift is given by


2012 ◽  
Vol 2 (5) ◽  
pp. 555-566 ◽  
Author(s):  
Toen Castle ◽  
Myfanwy E. Evans ◽  
Stephen T. Hyde ◽  
Stuart Ramsden ◽  
Vanessa Robins

We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic ( S 2 ), Euclidean ( E 2 ) and hyperbolic ( H 2 ) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions.


2014 ◽  
Vol 16 (06) ◽  
pp. 1450032
Author(s):  
Guoxin Wei ◽  
He-Jun Sun ◽  
Lingzhong Zeng

In this paper, we investigate eigenvalues of fractional Laplacian (–Δ)α/2|D, where α ∈ (0, 2], on a bounded domain in an n-dimensional Euclidean space and obtain a sharper lower bound for the sum of its eigenvalues, which improves some results due to Yildirim Yolcu and Yolcu in [Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math. 15(3) (2013) 1250048]. In particular, for the case of Laplacian, we obtain a sharper eigenvalue inequality, which gives an improvement of the result due to Melas in [A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131 (2003) 631–636].


2003 ◽  
Vol 18 (27) ◽  
pp. 1925-1929
Author(s):  
Mofazzal Azam

We derive an exact equation for simple self non-intersecting Wilson loops in non-Abelian gauge theories with gauge fields interacting with fermions in two-dimensional Euclidean space.


1989 ◽  
Vol 67 (7) ◽  
pp. 669-677 ◽  
Author(s):  
D. G. C. McKeon

Operator regularization has proved to be a viable way of computing radiative corrections that avoids both the insertion of a regulating parameter into the initial Lagrangian and the occurrence of explicit infinities at any stage of the calculation. We show how this regulating technique can be used in conjunction with field theories defined on an n + 1-dimensional hypersphere, which is the stereographic projection of n-dimensional Euclidean space. The radius of the hypersphere acts as an infrared cutoff, thus eliminating the need to insert a mass parameter to serve as an infrared regulator. This has the advantage of leaving conformai symmetry present in massless theories, intact. We illustrate our approach by considering [Formula: see text], massless Yang–Mills gauge theories and the two-dimensional nonlinear bosonic sigma model with torsion. In the last model, the lowest mode is used as an infrared cutoff.


Sign in / Sign up

Export Citation Format

Share Document