scholarly journals Tight wavelet frames generated by three symmetric $B$-spline functions with high vanishing moments

2003 ◽  
Vol 132 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Bin Han ◽  
Qun Mo
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mutaz Mohammad ◽  
Alexander Trounev

Abstract In this work, we propose a framelet method based on B-spline functions for solving nonlinear Volterra–Fredholm integro-differential equations and by involving Atangana–Baleanu fractional derivative, which can provide a reliable numerical approximation. The framelet systems are generated using the set of B-splines with high vanishing moments. We provide some numerical and graphical evidences to show the efficiency of the proposed method. The obtained numerical results of the proposed method compared with those obtained from CAS wavelets show a great agreement with the exact solution. We confirm that the method achieves accurate, efficient, and robust measurement.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Baoxing Zhang ◽  
Hongchan Zheng ◽  
Jie Zhou ◽  
Lulu Pan

Abstract The family of exponential pseudo-splines is the non-stationary counterpart of the pseudo-splines and includes the exponential B-spline functions as special members. Among the family of the exponential pseudo-splines, there also exists the subclass consisting of interpolatory cardinal functions, which can be obtained as the limits of the exponentials reproducing subdivision. In this paper, we mainly focus on this subclass of exponential pseudo-splines and propose their dual refinable functions with explicit form of symbols. Based on this result, we obtain the corresponding biorthogonal wavelets using the non-stationary Multiresolution Analysis (MRA). We verify the stability of the refinable and wavelet functions and show that both of them have exponential vanishing moments, a generalization of the usual vanishing moments. Thus, these refinable and wavelet functions can form a non-stationary generalization of the Coifman biorthogonal wavelet systems constructed using the masks of the D–D interpolatory subdivision.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
O. Tasbozan ◽  
A. Esen ◽  
N. M. Yagmurlu ◽  
Y. Ucar

A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made.


2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


Author(s):  
Kanchan Lata Gupta ◽  
B. Kunwar ◽  
V. K. Singh

Spline function is of very great interest in field of wavelets due to its compactness and smoothness property. As splines have specific formulae in both time and frequency domain, it greatly facilitates their manipulation. We have given a simple procedure to generate compactly supported orthogonal scaling function for higher order B-splines in our previous work. Here we determine the maximum vanishing moments of the formed spline wavelet as established by the new refinable function using sum rule order method.


2018 ◽  
Vol 26 (01) ◽  
pp. 1750030 ◽  
Author(s):  
V. Hernández ◽  
J. Estrada ◽  
E. Moreno ◽  
S. Rodríguez ◽  
A. Mansur

Ultrasonic guided waves propagating along large structures have great potential as a nondestructive evaluation method. In this context, it is very important to obtain the dispersion curves, which depend on the cross-section of the structure. In this paper, we compute dispersion curves along infinite isotropic plate-like structures using the semi-analytical method (SAFEM) with an isogeometric approach based on B-spline functions. The SAFEM method leads to a family of generalized eigenvalue problems depending on the wave number. For a prescribed wave number, the solution of this problem consists of the nodal displacement vector and the frequency of the guided wave. In this work, the results obtained with B-splines shape functions are compared to the numerical SAFEM solution with quadratic Lagrange shape functions. Advantages of the isogeometric approach are highlighted and include the smoothness of the displacement field components and the computational cost of solving the corresponding generalized eigenvalue problems. Finally, we investigate the convergence of Lagrange and B-spline approaches when the number of degrees of freedom grows. The study shows that cubic B-spline functions provide the best solution with the smallest relative errors for a given number of degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document