Quantum Weyl group and the universal quantum 𝑅-matrix

Author(s):  
Leonid Korogodski ◽  
Yan Soibelman
Keyword(s):  
Author(s):  
Stephen Piddock ◽  
Ashley Montanaro

AbstractA family of quantum Hamiltonians is said to be universal if any other finite-dimensional Hamiltonian can be approximately encoded within the low-energy space of a Hamiltonian from that family. If the encoding is efficient, universal families of Hamiltonians can be used as universal analogue quantum simulators and universal quantum computers, and the problem of approximately determining the ground-state energy of a Hamiltonian from a universal family is QMA-complete. One natural way to categorise Hamiltonians into families is in terms of the interactions they are built from. Here we prove universality of some important classes of interactions on qudits (d-level systems): We completely characterise the k-qudit interactions which are universal, if augmented with arbitrary Hermitian 1-local terms. We find that, for all $$k \geqslant 2$$ k ⩾ 2 and all local dimensions $$d \geqslant 2$$ d ⩾ 2 , almost all such interactions are universal aside from a simple stoquastic class. We prove universality of generalisations of the Heisenberg model that are ubiquitous in condensed-matter physics, even if free 1-local terms are not provided. We show that the SU(d) and SU(2) Heisenberg interactions are universal for all local dimensions $$d \geqslant 2$$ d ⩾ 2 (spin $$\geqslant 1/2$$ ⩾ 1 / 2 ), implying that a quantum variant of the Max-d-Cut problem is QMA-complete. We also show that for $$d=3$$ d = 3 all bilinear-biquadratic Heisenberg interactions are universal. One example is the general AKLT model. We prove universality of any interaction proportional to the projector onto a pure entangled state.


2021 ◽  
Vol 9 ◽  
Author(s):  
Colin Defant ◽  
Sam Hopkins

Abstract For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains. The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the number of cardinality $r-k$ . However, this symmetry is far from obvious. Panyushev posed the problem of defining an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers. Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation is Panyushev’s desired involution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Leontica ◽  
F. Tennie ◽  
T. Farrow

AbstractSimulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here, we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. We choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.


Author(s):  
Rosa Winter ◽  
Ronald van Luijk

AbstractLet $$\varGamma $$ Γ be the graph on the roots of the $$E_8$$ E 8 root system, where any two distinct vertices e and f are connected by an edge with color equal to the inner product of e and f. For any set c of colors, let $$\varGamma _c$$ Γ c be the subgraph of $$\varGamma $$ Γ consisting of all the 240 vertices, and all the edges whose color lies in c. We consider cliques, i.e., complete subgraphs, of $$\varGamma $$ Γ that are either monochromatic, or of size at most 3, or a maximal clique in $$\varGamma _c$$ Γ c for some color set c, or whose vertices are the vertices of a face of the $$E_8$$ E 8 root polytope. We prove that, apart from two exceptions, two such cliques are conjugate under the automorphism group of $$\varGamma $$ Γ if and only if they are isomorphic as colored graphs. Moreover, for an isomorphism f from one such clique K to another, we give necessary and sufficient conditions for f to extend to an automorphism of $$\varGamma $$ Γ , in terms of the restrictions of f to certain special subgraphs of K of size at most 7.


Sign in / Sign up

Export Citation Format

Share Document