On the spectral functions of a differential equation of second order with operator coefficients

Author(s):  
M. L. Gorbačuk
Author(s):  
B.J. Harris

SynopsisWe consider the second order, linear differential equationin the case where, roughly, q ∊ L1 [0, ∞). We devise a representation for the spectral function, τ(t), associated with (*) which is valid for t sufficiently large. Our results are the best possible.


2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hongwei Shi ◽  
Yuzhen Bai

AbstractIn this paper, we present several new oscillation criteria for a second order nonlinear differential equation with mixed neutral terms of the form $$ \bigl(r(t) \bigl(z'(t)\bigr)^{\alpha }\bigr)'+q(t)x^{\beta } \bigl(\sigma (t)\bigr)=0,\quad t\geq t_{0}, $$(r(t)(z′(t))α)′+q(t)xβ(σ(t))=0,t≥t0, where $z(t)=x(t)+p_{1}(t)x(\tau (t))+p_{2}(t)x(\lambda (t))$z(t)=x(t)+p1(t)x(τ(t))+p2(t)x(λ(t)) and α, β are ratios of two positive odd integers. Our results improve and complement some well-known results which were published recently in the literature. Two examples are given to illustrate the efficiency of our results.


Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhenhua Hu ◽  
Shuqing Zhou

We first introduce double obstacle systems associated with the second-order quasilinear elliptic differential equationdiv(A(x,∇u))=div f(x,u), whereA(x,∇u),f(x,u)are twon×Nmatrices satisfying certain conditions presented in the context, then investigate the local and global higher integrability of weak solutions to the double obstacle systems, and finally generalize the results of the double obstacle problems to the double obstacle systems.


Sign in / Sign up

Export Citation Format

Share Document