scholarly journals Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.

1990 ◽  
Vol 1 (8) ◽  
pp. 585-596 ◽  
Author(s):  
M J Sanderson ◽  
A C Charles ◽  
E R Dirksen

Intercellular communication of epithelial cells was examined by measuring changes in intracellular calcium concentration ([Ca2+]i). Mechanical stimulation of respiratory tract ciliated cells in culture induced a wave of increasing Ca2+ that spread, cell by cell, from the stimulated cell to neighboring cells. The communication of these Ca2+ waves between cells was restricted or blocked by halothane, an anesthetic known to uncouple cells. In the absence of extracellular Ca2+, the mechanically stimulated cell showed no change or a decrease in [Ca2+]i, whereas [Ca2+]i increased in neighboring cells. Iontophoretic injection of inositol 1,4,5-trisphosphate (IP3) evoked a communicated Ca2+ response that was similar to that produced by mechanical stimulation. These results support the hypothesis that IP3 acts as a cellular messenger that mediates communication through gap junctions between ciliated epithelial cells.

Author(s):  
Q. Bone ◽  
K. P. Ryan

The bristle-bearing receptors on either side of the trunk in Oikopleura are connected to the caudal ganglion by the axons of central cells which form electrical synapses (gap junctions) at the bases of the receptor cells. The same axons also form similar synapses with epithelial cells adjacent to the receptors. Direct mechanical stimulation of the receptor processes evokes changes in the locomotor rhythm of the same kind as evoked by action potentials propagated in the epithelial cells. This remarkable arrangement is suggested to be a consequence of the reduced numbers of cells in larvaceans.


1988 ◽  
Vol 254 (1) ◽  
pp. C63-C74 ◽  
Author(s):  
M. J. Sanderson ◽  
I. Chow ◽  
E. R. Dirksen

Cultured mammalian ciliated cells from the respiratory tract respond to mechanical stimulation of their cell surface by displaying a rapid transient increase in beat frequency. Surrounding adjacent and more distal neighboring ciliated cells display a similar frequency response after a short delay that is proportional to their distance from the stimulated cell. To characterize the progression of this communicated response we developed an automated computer-assisted image-analysis system to examine high-speed films of responding cells. Transmission of the frequency response between cells occurs at 0.63 cells/s at 25 degrees C and 1.54 cells/s at 37 degrees C. We have also confirmed that gap junctions exist between cells in both epithelial explants and outgrowths and that adjacent or nonadjacent ciliated, as well as nonciliated, cells are electrically coupled. We postulate that mechanical stimulation and intercellular communication provide a mechanism to regulate beat frequency between ciliated cells in order to facilitate efficient ciliary function and mucus transport.


1997 ◽  
Vol 273 (5) ◽  
pp. E850-E858 ◽  
Author(s):  
Marjan Hezareh ◽  
Werner Schlegel ◽  
Stephen R. Rawlings

To investigate the regulation of free cytosolic calcium concentration ([Ca2+]i) by the adenosine 3′,5′-cyclic monophosphate (cAMP) signaling system in clonal gonadotrophs, microfluorimetric recordings were made in single indo 1-loaded αT3–1 cells. Forskolin, 8-bromoadenosine 3′,5′-cyclic monophosphate, or a low concentration (100 pM) of the hypothalamic factor pituitary adenylate cyclase-activating polypeptide (PACAP) stimulated Ca2+ step responses or repetitive Ca2+ transients, which were blocked by the removal of extracellular Ca2+ by the dihydropyridine (DHP) (+)PN 200–110 or by preincubation with the protein kinase A (PKA) antagonist H-89 (10 μM). Thus activation of the cAMP/PKA system in αT3–1 gonadotrophs stimulates Ca2+ influx through DHP-sensitive (L-type) Ca2+ channels. In contrast, high PACAP concentrations (100 nM) stimulated biphasic Ca2+ spike-plateau responses. The Ca2+ spike was independent of extracellular Ca2+, and similar responses were observed by microperfusion of individual cells withd- myo-inositol 1,4,5-trisphosphate, suggesting the involvement of the phospholipase C (PLC) signaling pathway. The Ca2+plateau depended on Ca2+ influx, was blocked by (+)PN 200–110, but was only partially blocked by H-89 pretreatment. In conclusion, PACAP stimulates [Ca2+]iincreases in αT3–1 gonadotrophs through both the PLC and adenylate cyclase signaling pathways. Furthermore, this is the first clear demonstration that the cAMP/PKA system can mediate changes in [Ca2+]iin gonadotroph-like cells.


1992 ◽  
Vol 118 (1) ◽  
pp. 195-201 ◽  
Author(s):  
A C Charles ◽  
C C Naus ◽  
D Zhu ◽  
G M Kidder ◽  
E R Dirksen ◽  
...  

Calcium signaling in C6 glioma cells in culture was examined with digital fluorescence video microscopy. C6 cells express low levels of the gap junction protein connexin43 and have correspondingly weak gap junctional communication as evidenced by dye coupling (Naus, C. C. G., J. F. Bechberger, S. Caveney, and J. X. Wilson. 1991. Neurosci. Lett. 126:33-36). Transfection of C6 cells with the cDNA encoding connexin43 resulted in clones with increased expression of connexin43 mRNA and protein and increased dye coupling, as well as markedly reduced rates of proliferation (Zhu, D., S. Caveney, G. M. Kidder, and C. C. Naus. 1991. Proc. Natl. Acad. Sci. USA. 88:1883-1887; Naus, C. C. G., D. Zhu, S. Todd, and G. M. Kidder. 1992. Cell Mol. Neurobiol. 12:163-175). Mechanical stimulation of a single cell in a culture of non-transfected C6 cells induced a wave of increased intracellular calcium concentration ([Ca2+]i) that showed little or no communication to adjacent cells. By contrast, mechanical stimulation of a single cell in cultures of C6 clones expressing transfected connexin43 cDNA induced a Ca2+ wave that was communicated to multiple surrounding cells, and the extent of communication was proportional to the level of expression of the connexin43 cDNA. These results provide direct evidence that intercellular Ca2+ signaling occurs via gap junctions. Ca2+ signaling through gap junctions may provide a means for the coordinated regulation of cellular function, including cell growth and differentiation.


1996 ◽  
Vol 44 (11) ◽  
pp. 1237-1242 ◽  
Author(s):  
T Sugiyama ◽  
M Yamamoto-Hino ◽  
K Wasano ◽  
K Mikoshiba ◽  
M Hasegawa

We investigated the immunohistochemical localization of inositol 1,4,5-trisphosphate receptor (IP3R) Types 1, 2, and 3 in rat airway epithelium using the monoclonal antibodies KM1112, KM1083, and KM1082 specific for each type of IP3R. The epithelium from trachea to distal intrapulmonary airways (bronchioles) showed positive immunoreactivity for all types of IP3R. However, cell type as well as subcellular site immunoreactivity for each type of IP3R varied. IP3R Type 1 was found only in the apical thin cytoplasmic area of ciliated cells throughout all airway levels. IP3R Type 2 was exclusively localized to the entire cytoplasm of ciliated cells from the trachea to bronchioles. IP3R Type 3 was expressed mainly in the supranuclear cytoplasm not only of ciliated cells at all airway levels but also in Clara cells of the bronchiolar epithelium. Double fluorescent staining using combinations of KM1083 and Wisteria floribunda lectin or anti-rat 10-KD Clara cell-specific protein antibody confirmed that the IP3R Type 2-positive cells were neither seromucous cells nor Clara cells. These results indicate that the expression of three types of IP3Rs in different cell types and subcellular sites may reflect diverse physiological functions of IP3Rs within airway epithelial cells. The double staining studies suggested that the anti-IP3R Type 2 monoclonal antibody KM1083 would be a specific cell marker for ciliated cells of the airway epithelium.


1882 ◽  
Vol 33 (216-219) ◽  
pp. 11-11

Ciliated epithelial cells are found in the thymus of the dog: this is not the case in quite young animals, but ciliated epithelium can always be demonstrated in the thymus of a dog over thirty months old, and often in those of much younger animals. In the older dogs the ciliated cells are found lining cysts, and the cysts appeal to increase in size with the age of the animal. The ciliated epithelial cells take origin from connective tissue corpuscles. The connective tissue corpuscles forming the network in the medullary poition are in places massed together, forming concentric corpuscles of small size; in these masses small cavities are formed, and the lining cells are transformed into ciliated cells.


1994 ◽  
Vol 107 (11) ◽  
pp. 3037-3044 ◽  
Author(s):  
S. Boitano ◽  
M.J. Sanderson ◽  
E.R. Dirksen

Mechanical stimulation of a single cell in a cultured monolayer of airway epithelial cells initiates an intercellularly communicated increase in intracellular Ca2+ concentration ([Ca2+]i) that propagates radically through adjacent cells via gap junctions, forming an intercellular Ca2+ wave. Mechanically-induced intercellular Ca2+ waves also occur in the absence of extracellular Ca2+. However, in Ca(2+)-free medium an increase in [Ca2+]i of the stimulated cell does not occur. Thus, mechanically-induced [Ca2+]i changes in the stimulated cell are influenced by the extracellular Ca2+ concentration. To investigate if a channel-mediated Ca2+ flux across the plasma membrane contributes to the elevation of [Ca2+]i in the stimulated cell we used digital image microscopy to measure mechanically-induced [Ca2+]i changes in the presence of Ca2+ channel blockers. In Ca(2+)-free medium containing Gd3+ (20 microM) mechanical stimulation resulted in an [Ca2+]i increase in the stimulated cell. The delay time between mechanical stimulation and increase in [Ca2+]i of the stimulated cell was dependent on extracellular [Gd3+], with a half-maximal effective concentration of approximately 40 microM. Mechanical stimulation in Ca(2+)-free medium containing La3+ (10 microM) or Ni2+ (100 microM) gave similar results. Mechanical stimulation in Ca(2+)-free medium containing the dihydropyridine Ca2+ channel blockers nifedipine (10 microM) and nimodipine (10 microM) also resulted in an increase of [Ca2+]i of the stimulated cell. Mechanical stimulation of cells treated with thapsigargin to deplete intracellular Ca2+ stores, in the presence of 1.3 mM extracellular Ca2+, results in an increase in [Ca2+]i of the stimulated cell without the propagation of an intercellular Ca2+ wave.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document