Intercellular communication between ciliated cells in culture

1988 ◽  
Vol 254 (1) ◽  
pp. C63-C74 ◽  
Author(s):  
M. J. Sanderson ◽  
I. Chow ◽  
E. R. Dirksen

Cultured mammalian ciliated cells from the respiratory tract respond to mechanical stimulation of their cell surface by displaying a rapid transient increase in beat frequency. Surrounding adjacent and more distal neighboring ciliated cells display a similar frequency response after a short delay that is proportional to their distance from the stimulated cell. To characterize the progression of this communicated response we developed an automated computer-assisted image-analysis system to examine high-speed films of responding cells. Transmission of the frequency response between cells occurs at 0.63 cells/s at 25 degrees C and 1.54 cells/s at 37 degrees C. We have also confirmed that gap junctions exist between cells in both epithelial explants and outgrowths and that adjacent or nonadjacent ciliated, as well as nonciliated, cells are electrically coupled. We postulate that mechanical stimulation and intercellular communication provide a mechanism to regulate beat frequency between ciliated cells in order to facilitate efficient ciliary function and mucus transport.

1986 ◽  
Vol 122 (1) ◽  
pp. 1-12 ◽  
Author(s):  
KARIN VON SECKENDORFF HOFF ◽  
RICHARD JOEL WASSERSUG

The kinematics of swimming in larval Xenopus laevis has been studied using computer-assisted analysis of high-speed (200 frames s−1) ciné records. The major findings are as follows. 1. At speeds below 6 body lengths (L) per second, tail beat frequency is approximately 10 Hz and, unlike for most aquatic vertebrates, is not correlated with specific swimming speed. At higher speeds, tail beat frequency and speed are positively correlated. 2. Xenopus tadpoles show an increase in the maximum amplitude of the tail beat with increasing velocity up to approximately 6Ls−1. Above that speed amplitude approaches an asymptote at 20 % of body length. 3. Anterior yaw is absent at velocities below 6Ls−1, unlike for other anuran larvae, but is present at higher speeds. 4. At speeds below 6Ls−1 there is a positive linear relationship between length of the propulsive wave (λ) and specific swimming speed. At higher speeds wavelength is constant at approximately 0.8L. 5. There is a shift in the modulation of wavelength and tail beat frequency with swimming speed around 5.6Ls−1, suggesting two different swimming modes. The slower mode is used during open water cruising and suspension feeding. The faster, sprinting mode may be used to avoid predators. 6. Froude efficiencies are similar to those reported for fishes and other anuran larvae. 7. Unlike Rana and Bufo larvae, the axial muscle mass of Xenopus increases dramatically with size from less than 10% of total mass for the smallest animals to more than 45% of total mass for the largest animals. This increase is consistent with maintaining high locomotor performance throughout development.


2014 ◽  
Vol 644-650 ◽  
pp. 1031-1034
Author(s):  
Nan Xu ◽  
Jian Wei Li ◽  
Jian Li ◽  
Zhi Xin Zhang

In this paper, frequency-stabilized laser technology is introduced into photodetector frequency response measurement system. A 1531nm frequency-stabilized laser fulfilled by acetylene saturated absorption is employed to produce coherent light with a tunable laser source, gaining stable beat frequency light that reaches as high as several hundred ghz, fulfilling measurement of 40ghz high-speed photodetector frequency response bandwidth, and lowering impacts caused by instability of light frequency. In addition, measurement uncertainty analysis is conducted, which is better than 7 %(k=2).


1985 ◽  
Vol 119 (1) ◽  
pp. 1-30 ◽  
Author(s):  
RICHARD J. WASSERSUG ◽  
KARIN VON SECHENDORF HOFF

The kinematics of swimming in tadpoles from four species of anurans (Rana catesbeiana Shaw, Rana septentrionalis Baird, Rana clamitans Latreille and Bufo americanus Holbrook) was studied using computer-assisted analysis of high speed (≥200 frames s−1) ciné records. 1. Tadpoles exhibit the same positive, linear relationship between tail beat frequency and specific swimming speed commonly reported for subcarangiform fishes. 2. Tadpoles show an increase in the maximum amplitude of the tail beat with increasing swimming speed up to approximately 4 lengths s−1. Above 4 lengths s−1, amplitude approaches an asymptote at approximately 25 % of length. 3. Tadpoles with relatively longer tails have lower specific amplitudes. 4. Froude efficiencies for tadpoles are similar to those reported for most subcarangiform fishes. 5. Bufo larvae tend to have higher specific maximum amplitude, higher tail beat frequencies, lower propeller efficiencies (at least at intermediate speeds) and substantially less axial musculature than do comparable-sized Rana larvae. These differences may relate to the fact that Bufo larvae are noxious to many potential predators and consequently need not rely solely on locomotion for defence. 6. Tadpoles exhibit larger amounts of lateral movement at the snout than do most adult fishes. 7. The point of least lateral movement during swimming in tadpoles is at the level of the semi-circular canals, as assumed in models on the evolution of the vertebrate inner ear. 8. Passive oscillation of anaesthetized and curarized tadpoles at the base of their tail produces normal kinematics in the rest of the tail. This supports the idea that muscular activity in the posterior, tapered portion of the tadpole tail does not serve a major role in thrust production during normal, straightforward swimming at constant velocity. 9. The angle of incidence and lateral velocity of the tail tip as it crosses the path of motion are not consistent with theoretical predictions of how thrust should be generated. The same parameters evaluated at the high point of the tail fin (approximately midtail) suggest that that portion of the tail generates thrust most effectively. 10. Ablation of the end of the tail in passively oscillated tadpoles confirms that the terminal portion of the tadpole tail serves to reduce excessive amplitude in the more anterior portion of the tail, where most thrust is generated. 11. The posterior portion of the tail is important in reducing turbulence around a tadpole. It may also function to produce thrust during irregular, intricate movements, such as swimming backwards. 12. Tadpoles are comparable to subcarangiform fishes of similar size in their maximum swimming speed and mechanical efficiency, despite the fact that they have much less axial musculature and lack the elaborate skeletal elements that stiffen the fins in fishes. The simple shape of the tadpole tail appears to allow these animals efficient locomotion over short distances and high manoeuvrability, while maintaining the potential for rapid morphological change at metamorphosis.


1990 ◽  
Vol 1 (8) ◽  
pp. 585-596 ◽  
Author(s):  
M J Sanderson ◽  
A C Charles ◽  
E R Dirksen

Intercellular communication of epithelial cells was examined by measuring changes in intracellular calcium concentration ([Ca2+]i). Mechanical stimulation of respiratory tract ciliated cells in culture induced a wave of increasing Ca2+ that spread, cell by cell, from the stimulated cell to neighboring cells. The communication of these Ca2+ waves between cells was restricted or blocked by halothane, an anesthetic known to uncouple cells. In the absence of extracellular Ca2+, the mechanically stimulated cell showed no change or a decrease in [Ca2+]i, whereas [Ca2+]i increased in neighboring cells. Iontophoretic injection of inositol 1,4,5-trisphosphate (IP3) evoked a communicated Ca2+ response that was similar to that produced by mechanical stimulation. These results support the hypothesis that IP3 acts as a cellular messenger that mediates communication through gap junctions between ciliated epithelial cells.


Author(s):  
Beverly L. Giammara ◽  
Jennifer S. Stevenson ◽  
Peggy E. Yates ◽  
Robert H. Gunderson ◽  
Jacob S. Hanker

An 11mm length of sciatic nerve was removed from 10 anesthetized adult rats and replaced by a biodegradable polyester Vicryl™ mesh sleeve which was then injected with the basement membrane gel, Matrigel™. It was noted that leg sensation and movement were much improved after 30 to 45 days and upon sacrifice nerve reconnection was noted in all animals. Epoxy sections of the repaired nerves were compared with those of the excised segments by the use of a variation of the PAS reaction, the PATS reaction, developed in our laboratories for light and electron microscopy. This microwave-accelerated technique employs periodic acid, thiocarbohydrazide and silver methenamine. It stains basement membrane or Type IV collagen brown and type III collagen (reticulin), axons, Schwann cells, endoneurium and perineurium black. Epoxy sections of repaired and excised nerves were also compared by toluidine blue (tb) staining. Comparison of the sections of control and repaired nerves was done by computer-assisted microscopic image analysis using an Olympus CUE-2 Image Analysis System.


Author(s):  
Robert Hard ◽  
Gerald Rupp ◽  
Matthew L. Withiam-Leitch ◽  
Lisa Cardamone

In a coordinated field of beating cilia, the direction of the power stroke is correlated with the orientation of basal body appendages, called basal feet. In newt lung ciliated cells, adjacent basal feet are interconnected by cold-stable microtubules (basal MTs). In the present study, we investigate the hypothesis that these basal MTs stabilize ciliary distribution and alignment. To accomplish this, newt lung primary cultures were treated with the microtubule disrupting agent, Colcemid. In newt lung cultures, cilia normally disperse in a characteristic fashion as the mucociliary epithelium migrates from the tissue explant. Four arbitrary, but progressive stages of dispersion were defined and used to monitor this redistribution process. Ciliaiy beat frequency, coordination, and dispersion were assessed for 91 hrs in untreated (control) and treated cultures. When compared to controls, cilia dispersed more rapidly and ciliary coordination decreased markedly in cultures treated with Colcemid (2 mM). Correlative LM/EM was used to assess whether these effects of Colcemid were coupled to ultrastructural changes. Living cells were defined as having coordinated or uncoordinated cilia and then were processed for transmission EM.


2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


2014 ◽  
Vol 272 (10) ◽  
pp. 2839-2845 ◽  
Author(s):  
Fengwei An ◽  
Lijun Xing ◽  
Zhiqiang Zhang ◽  
Lei Chen

Sign in / Sign up

Export Citation Format

Share Document