scholarly journals Association of Rab25 and Rab11a with the Apical Recycling System of Polarized Madin–Darby Canine Kidney Cells

1999 ◽  
Vol 10 (1) ◽  
pp. 47-61 ◽  
Author(s):  
James E. Casanova ◽  
Xiaoye Wang ◽  
Ravindra Kumar ◽  
Sheela G. Bhartur ◽  
Jennifer Navarre ◽  
...  

Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin–Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.

2002 ◽  
Vol 13 (1) ◽  
pp. 158-168 ◽  
Author(s):  
Anne Mu∸sch ◽  
David Cohen ◽  
Charles Yeaman ◽  
W. James Nelson ◽  
Enrique Rodriguez-Boulan ◽  
...  

The Drosophila tumor suppressor protein lethal (2) giant larvae [l(2)gl] is involved in the establishment of epithelial cell polarity during development. Recently, a yeast homolog of the protein has been shown to interact with components of the post-Golgi exocytic machinery and to regulate a late step in protein secretion. Herein, we characterize a mammalian homolog of l(2)gl, called Mlgl, in the epithelial cell line Madin-Darby canine kidney (MDCK). Consistent with a role in cell polarity, Mlgl redistributes from a cytoplasmic localization to the lateral membrane after contact-naive MDCK cells make cell-cell contacts and establish a polarized phenotype. Phosphorylation within a highly conserved region of Mlgl is required to restrict the protein to the lateral domain, because a recombinant phospho-mutant is distributed in a nonpolar manner. Membrane-bound Mlgl from MDCK cell lysates was coimmunoprecipitated with syntaxin 4, a component of the exocytic machinery at the basolateral membrane, but not with other plasma membrane solubleN-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins that are either absent from or not restricted to the basolateral membrane domain. These data suggest that Mlgl contributes to apico-basolateral polarity by regulating basolateral exocytosis.


1999 ◽  
Vol 145 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Rosa Puertollano ◽  
Fernando Martín-Belmonte ◽  
Jaime Millán ◽  
María del Carmen de Marco ◽  
Juan P. Albar ◽  
...  

The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.


1993 ◽  
Vol 265 (1) ◽  
pp. C193-C200 ◽  
Author(s):  
H. Luo ◽  
A. Tesfaye ◽  
I. Schieren ◽  
H. S. Chase

Madin-Darby canine kidney (MDCK) cells were transfected with the cDNA for the rat 5-HT1C receptor (pMV7-SR1c) using electroporation. Cells that survived G418 selection medium were loaded with indo-1 and run through a fluorescence-activated cell sorter (FACS); 10% responded to serotonin (5-HT) with an increase in intracellular Ca2+ concentration ([Ca2+]i). Responding cells were separated with the FACS, grown to confluence, and resorted two more times until a clone of 100% respondents was obtained (SR-MDCK). In SR-MDCK cells grown on porous filters, [Ca2+]i increased only when 5-HT was applied to the basolateral membrane (change in [Ca2+]i = 190 +/- 43 nM); there was no response of [Ca2+]i to apical application of 5-HT. The asymmetric response to 5-HT was likely due to targeting of 5-HT1C receptors exclusively to the basolateral membrane of SR-MDCK cells; 125I-labeled lysergic acid diethylamide binding sites, a marker of high-affinity 5-HT receptors, were located only in the basolateral membrane. These experiments demonstrate that epithelial cells can be stably transfected to express G protein-linked, calcium-mobilizing receptors and that the receptors may be targeted asymmetrically to specific domains of the plasma membrane.


2001 ◽  
Vol 12 (8) ◽  
pp. 2257-2274 ◽  
Author(s):  
Raul Rojas ◽  
Wily G. Ruiz ◽  
Som-Ming Leung ◽  
Tzuu-Shuh Jou ◽  
Gerard Apodaca

Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.


1993 ◽  
Vol 289 (1) ◽  
pp. 263-268 ◽  
Author(s):  
S O Rosenberg ◽  
T Fadil ◽  
V L Schuster

Monolayers of Madin-Darby Canine Kidney (MDCK) cells grown on permeable filters generated lactate aerobically and accumulated it preferentially in the basolateral compartment, suggesting the presence of a lactate carrier. The mechanism of lactate transport across apical and basolateral membranes was examined by determining intracellular pH (pHi) microspectrofluorimetrically after addition of lactate to the extracellular solutions and by measuring uptake of [14C]lactate. Addition of 20 mM lactate to the apical compartment produced no change in pHi, whereas lactate added to the basolateral compartment rapidly and reversibly lowered pHi. Pyruvate produced similar results. Inhibitors of lactate/H+ co-transporters, alpha-cyano-4-hydroxycinnamate (CnCN) and quercetin, partially inhibited the fall in pHi produced by basolateral lactate. In contrast, the disulphonic stilbene. DIDS (4,4′-di-isothiocyanostilbene-2,2′-disulphonic acid) produced no inhibition at 0.5 mM. Kinetic analysis was performed by applying basolateral lactate at various concentrations and measuring the rate of entry (delta pHi/min) in the presence and absence of CnCN. Lactate flux was shown to occur by both non-ionic diffusion and a alpha-cyano-4-hydroxycinnamate-sensitive component (carrier). The latter has a Km of approximately 7 mM for the lactate anion. Propionate, but not formate, lowered pHi to the same degree as did equimolar lactate, but the propionate effect was not inhibited by CnCN. Influx of [14C]lactate was substantially greater across the basolateral membrane than across the apical membrane and occurred in the absence of Na+. We conclude that MDCK cells grown on permeable filters generate lactate aerobically and transport it across the basolateral membrane by way of a lactate/H+ cotransporter.


1989 ◽  
Vol 109 (6) ◽  
pp. 2809-2816 ◽  
Author(s):  
L Graeve ◽  
K Drickamer ◽  
E Rodriguez-Boulan

We have studied the expression of the chicken hepatic glycoprotein receptor (chicken hepatic lectin [CHL]) in Madin-Darby canine kidney (MDCK) cells, by transfection of its cDNA under the control of a retroviral promotor. Transfected cell lines stably express 87,000 surface receptors/cell with a kd = 13 nM. In confluent monolayers, approximately 40% of CHL is localized at the plasma membrane. 98% of the surface CHL is expressed at the basolateral surface where it performs polarized endocytosis and degradation of glycoproteins carrying terminal N-acetylglucosamine at a rate of 50,000 ligand molecules/h. Studies of the half-life of metabolically labeled receptor and of the stability of biotinylated cell surface receptor after internalization indicate that transfected CHL performs several rounds of uptake and recycling before it gets degraded. The successful expression of a functional basolateral receptor in MDCK cells opens the way for the characterization of the mechanisms that control targeting and recycling of proteins to the basolateral membrane of epithelial cells.


1998 ◽  
Vol 9 (9) ◽  
pp. 2477-2490 ◽  
Author(s):  
Jennifer R. Henkel ◽  
Gerard Apodaca ◽  
Yoram Altschuler ◽  
Stephen Hardy ◽  
Ora A. Weisz

The function of acidification along the endocytic pathway is not well understood, in part because the perturbants used to modify compartmental pH have global effects and in some cases alter cytoplasmic pH. We have used a new approach to study the effect of pH perturbation on postendocytic traffic in polarized Madin–Darby canine kidney (MDCK) cells. Influenza M2 is a small membrane protein that functions as an acid-activated ion channel and can elevate the pH of the trans-Golgi network and endosomes. We used recombinant adenoviruses to express the M2 protein of influenza virus in polarized MDCK cells stably transfected with the polymeric immunoglobulin (Ig) receptor. Using indirect immunofluorescence and immunoelectron microscopy, M2 was found to be concentrated at the apical plasma membrane and in subapical vesicles; intracellular M2 colocalized partly with internalized IgA in apical recycling endosomes as well as with the trans-Golgi network marker TGN-38. Expression of M2 slowed the rate of IgA transcytosis across polarized MDCK monolayers. The delay in transport occurred after IgA reached the apical recycling endosome, consistent with the localization of intracellular M2. Apical recycling of IgA was also slowed in the presence of M2, whereas basolateral recycling of transferrin and degradation of IgA were unaffected. By contrast, ammonium chloride affected both apical IgA and basolateral transferrin release. Together, our data suggest that M2 expression selectively perturbs acidification in compartments involved in apical delivery without disrupting other postendocytic transport steps.


1983 ◽  
Vol 96 (3) ◽  
pp. 866-874 ◽  
Author(s):  
E Rodriguez-Boulan ◽  
K T Paskiet ◽  
D D Sabatini

In confluent monolayers of the dog kidney epithelial cell line Madin-Darby canine kidney (MDCK) assembly of RNA enveloped viruses reflects the functional polarization of the cells. Thus, influenza, Sendai, and Simian virus 5 bud from the apical (free) surface, while vesicular stomatitis virions (VSV) are assembled at basolateral plasma membrane domains (Rodriguez-Boulan, E., and D.D. Sabatini, 1978, Proc. Natl. Acad. Sci. U.S.A., 75:5071-5075). MDCK cells derived from confluent monolayers by dissociation with trypsin-EDTA and maintained as single cells in spinner medium for 12-20 h before infection, lose their characteristic structural polarity. Furthermore, when these cells were infected with influenza or VSV, virions assembled in a nonpolarized fashion over most of the cell surface. However, when dissociated MDCK cells infected in suspension were sparsely plated on collagen gels to prevent intercellular contact and the formation of junctions, the characteristic polarity of viral budding observed in confluent monolayers was again manifested; i.e., VSV budded preferentially from adherent surfaces and influenza almost exclusively from free surface regions. Similar polarization was observed in cells which became aggregated during incubation in spinner medium: influenza budded from the free surface, while VSV was produced at regions of cell-cell contact. It therefore appears that in isolated epithelial cells attachment to a substrate or to another cell is sufficient to trigger the expression of plasma membrane polarity which is manifested in the asymmetric budding of viruses.


2000 ◽  
Vol 11 (1) ◽  
pp. 287-304 ◽  
Author(s):  
Tzuu-Shuh Jou ◽  
Som-Ming Leung ◽  
Linette M. Fung ◽  
Wily G. Ruiz ◽  
W. James Nelson ◽  
...  

Madin-Darby canine kidney (MDCK) cells expressing constitutively active Rac1 (Rac1V12) accumulate a large central aggregate of membranes beneath the apical membrane that contains filamentous actin, Rac1V12, rab11, and the resident apical membrane protein GP-135. To examine the roles of Rac1 in membrane traffic and the formation of this aggregate, we analyzed endocytic and biosynthetic trafficking pathways in MDCK cells expressing Rac1V12 and dominant inactive Rac1 (Rac1N17). Rac1V12 expression decreased the rates of apical and basolateral endocytosis, whereas Rac1N17 expression increased those rates from both membrane domains. Basolateral-to-apical transcytosis of immunoglobulin A (IgA) (a ligand for the polymeric immunoglobulin receptor [pIgR]), apical recycling of pIgR-IgA, and accumulation of newly synthesized GP-135 at the apical plasma membrane were all decreased in cells expressing Rac1V12. These effects of Rac1V12 on trafficking pathways to the apical membrane were the result of the delivery and trapping of these proteins in the central aggregate. In contrast to abnormalities in apical trafficking events, basolateral recycling of transferrin, degradation of EGF internalized from the basolateral membrane, and delivery of newly synthesized pIgR from the Golgi to the basolateral membrane were all relatively unaffected by Rac1V12 expression. Rac1N17 expression had little or no effect on these postendocytic or biosynthetic trafficking pathways. These results show that in polarized MDCK cells activated Rac1 may regulate the rate of endocytosis from both membrane domains and that expression of dominant active Rac1V12 specifically alters postendocytic and biosynthetic membrane traffic directed to the apical, but not the basolateral, membrane.


2005 ◽  
Vol 79 (2) ◽  
pp. 927-933 ◽  
Author(s):  
Shan-Lu Liu ◽  
A. Dusty Miller

ABSTRACT Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) induce epithelial tumors in the airways of sheep and goats. In both of these simple retroviruses, the envelope (Env) protein is the active oncogene. Furthermore, JSRV Env can transform cultured cells by two distinct mechanisms. In rat and mouse fibroblasts, the cytoplasmic tail of JSRV Env is essential for transformation, which involves activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and the virus receptor hyaluronidase 2 (Hyal2) is not involved. In contrast, in the BEAS-2B human bronchial epithelial cell line, transformation is mediated by JSRV Env binding to Hyal2 followed by Hyal2 degradation and activation of the receptor tyrosine kinase RON, the activity of which is normally suppressed by Hyal2. Here we show that JSRV and ENTV Env proteins can also transform Madin-Darby canine kidney (MDCK) epithelial cells, but by a mechanism similar to that observed in fibroblast cell lines. In particular, the cytoplasmic tail of Env is required for transformation, the PI3K/Akt pathway is activated, expression of RON (which is not normally expressed in MDCK cells) does not affect transformation, and canine Hyal2 appears uninvolved. These results show that the JSRV and ENTV Env proteins can transform epithelial cells besides BEAS-2B cells and argue against a model for Env transformation involving different pathways that are uniquely active in fibroblasts or epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document