scholarly journals Adaptins

2001 ◽  
Vol 12 (10) ◽  
pp. 2907-2920 ◽  
Author(s):  
Markus Boehm ◽  
Juan S. Bonifacino

Adaptins are subunits of adaptor protein (AP) complexes involved in the formation of intracellular transport vesicles and in the selection of cargo for incorporation into the vesicles. In this article, we report the results of a survey for adaptins from sequenced genomes including those of man, mouse, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, the plant Arabidopsis thaliana, and the yeasts, Saccharomyces cerevisiae andSchizosaccharomyces pombe. We find that humans, mice, and Arabidopsis thaliana have four AP complexes (AP-1, AP-2, AP-3, and AP-4), whereas D. melanogaster,C. elegans, S. cerevisiae, and S. pombe have only three (AP-1, AP-2, and AP-3). Additional diversification of AP complexes arises from the existence of adaptin isoforms encoded by distinct genes or resulting from alternative splicing of mRNAs. We complete the assignment of adaptins to AP complexes and provide information on the chromosomal localization, exon-intron structure, and pseudogenes for the different adaptins. In addition, we discuss the structural and evolutionary relationships of the adaptins and the genetic analyses of their function. Finally, we extend our survey to adaptin-related proteins such as the GGAs and stonins, which contain domains homologous to the adaptins.

2008 ◽  
Vol 50 (2) ◽  
pp. 191-202 ◽  
Author(s):  
José G. García-Cerdán ◽  
Dmitry Sveshnikov ◽  
David Dewez ◽  
Stefan Jansson ◽  
Christiane Funk ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Xue ◽  
Zhenhui Zhong ◽  
C. Jake Harris ◽  
Javier Gallego-Bartolomé ◽  
Ming Wang ◽  
...  

AbstractThe Microrchidia (MORC) family of ATPases are required for transposable element (TE) silencing and heterochromatin condensation in plants and animals, and C. elegans MORC-1 has been shown to topologically entrap and condense DNA. In Arabidopsis thaliana, mutation of MORCs has been shown to reactivate silent methylated genes and transposons and to decondense heterochromatic chromocenters, despite only minor changes in the maintenance of DNA methylation. Here we provide the first evidence localizing Arabidopsis MORC proteins to specific regions of chromatin and find that MORC4 and MORC7 are closely co-localized with sites of RNA-directed DNA methylation (RdDM). We further show that MORC7, when tethered to DNA by an artificial zinc finger, can facilitate the establishment of RdDM. Finally, we show that MORCs are required for the efficient RdDM mediated establishment of DNA methylation and silencing of a newly integrated FWA transgene, even though morc mutations have no effect on the maintenance of preexisting methylation at the endogenous FWA gene. We propose that MORCs function as a molecular tether in RdDM complexes to reinforce RdDM activity for methylation establishment. These findings have implications for MORC protein function in a variety of other eukaryotic organisms.


2021 ◽  
Vol 189 ◽  
pp. 112822
Author(s):  
Reinmar Eggers ◽  
Alexandra Jammer ◽  
Shalinee Jha ◽  
Bianca Kerschbaumer ◽  
Majd Lahham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document