scholarly journals α-Catenin-independent Recruitment of ZO-1 to Nectin-based Cell-Cell Adhesion Sites through Afadin

2001 ◽  
Vol 12 (6) ◽  
pp. 1595-1609 ◽  
Author(s):  
Shigekazu Yokoyama ◽  
Kouichi Tachibana ◽  
Hiroyuki Nakanishi ◽  
Yasunori Yamamoto ◽  
Kenji Irie ◽  
...  

ZO-1 is an actin filament (F-actin)–binding protein that localizes to tight junctions and connects claudin to the actin cytoskeleton in epithelial cells. In nonepithelial cells that have no tight junctions, ZO-1 localizes to adherens junctions (AJs) and may connect cadherin to the actin cytoskeleton indirectly through β- and α-catenins as one of many F-actin–binding proteins. Nectin is an immunoglobulin-like adhesion molecule that localizes to AJs and is associated with the actin cytoskeleton through afadin, an F-actin–binding protein. Ponsin is an afadin- and vinculin-binding protein that also localizes to AJs. The nectin-afadin complex has a potency to recruit the E-cadherin–β-catenin complex through α-catenin in a manner independent of ponsin. By the use of cadherin-deficient L cell lines stably expressing various components of the cadherin-catenin and nectin-afadin systems, and α-catenin–deficient F9 cell lines, we examined here whether nectin recruits ZO-1 to nectin-based cell-cell adhesion sites. Nectin showed a potency to recruit not only α-catenin but also ZO-1 to nectin-based cell-cell adhesion sites. This recruitment of ZO-1 was dependent on afadin but independent of α-catenin and ponsin. These results indicate that ZO-1 localizes to cadherin-based AJs through interactions not only with α-catenin but also with the nectin-afadin system.

Traffic ◽  
2001 ◽  
Vol 2 (11) ◽  
pp. 851-858 ◽  
Author(s):  
Elizabeth M. Bennett ◽  
Chih-Ying Chen ◽  
Asa E. Y. Engqvist-Goldstein ◽  
David G. Drubin ◽  
Frances M. Brodsky

1999 ◽  
Vol 112 (12) ◽  
pp. 1915-1923 ◽  
Author(s):  
P.L. Hordijk ◽  
E. Anthony ◽  
F.P. Mul ◽  
R. Rientsma ◽  
L.C. Oomen ◽  
...  

Vascular endothelial (VE)-cadherin is the endothelium-specific member of the cadherin family of homotypic cell adhesion molecules. VE-cadherin, but not the cell adhesion molecule platelet/endothelial cell adhesion molecule (PECAM-1), markedly colocalizes with actin stress fibers at cell-cell junctions between human umbilical vein endothelial cells. Inhibition of VE-cadherin-mediated, but not PECAM-1-mediated, adhesion induced reorganization of the actin cytoskeleton, loss of junctional VE-cadherin staining and loss of cell-cell adhesion. In functional assays, inhibition of VE-cadherin caused increased monolayer permeability and enhanced neutrophil transendothelial migration. In a complementary set of experiments, modulation of the actin cytoskeleton was found to strongly affect VE-cadherin distribution. Brief stimulation of the beta2-adrenergic receptor with isoproterenol induced a loss of actin stress fibers resulting in a linear, rather than ‘jagged’, VE-cadherin distribution. The concomitant, isoproterenol-induced, reduction in monolayer permeability was alleviated by a VE-cadherin-blocking antibody. Finally, cytoskeletal reorganization resulting from the inactivation of p21Rho caused a diffuse localization of VE-cadherin, which was accompanied by reduced cell-cell adhesion. Together, these data show that monolayer permeability and neutrophil transendothelial migration are modulated by VE-cadherin-mediated cell-cell adhesion, which is in turn controlled by the dynamics of the actin cytoskeleton.


2008 ◽  
Vol 28 (10) ◽  
pp. 3324-3335 ◽  
Author(s):  
Hiroyoshi Nakatsuji ◽  
Noriyuki Nishimura ◽  
Rie Yamamura ◽  
Hiro-omi Kanayama ◽  
Takuya Sasaki

ABSTRACT Tight junctions (TJs) are cell-cell adhesive structures that undergo continuous remodeling. We previously demonstrated that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) localized at TJs and mediated the endocytic recycling of the integral TJ protein occludin and the formation of functional TJs. Here, we investigated how JRAB/MICAL-L2 was targeted to TJs. Using a series of deletion mutants, we found the plasma membrane (PM)-targeting domain within JRAB/MICAL-L2. We then identified actinin-4, which was originally isolated as an actin-binding protein associated with cell motility and cancer invasion/metastasis, as a binding protein for the PM-targeting domain of JRAB/MICAL-L2, using a yeast two-hybrid system. Actinin-4 was colocalized with JRAB/MICAL-L2 at cell-cell junctions and linked JRAB/MICAL-L2 to F-actin. Although actinin-4 bound to JRAB/MICAL-L2 without Rab13, the actinin-4-JRAB/MICAL-L2 interaction was enhanced by Rab13 activation. Depletion of actinin-4 by using small interfering RNA inhibited the recruitment of occludin to TJs during the Ca2+ switch. During the epithelial polarization after replating, JRAB/MICAL-L2 was recruited from the cytosol to cell-cell junctions. This JRAB/MICAL-L2 recruitment as well as the formation of functional TJs was delayed in actinin-4-depleted cells. These results indicate that actinin-4 is involved in recruiting JRAB/MICAL-L2 to cell-cell junctions and forming functional TJs.


2000 ◽  
Vol 113 (2) ◽  
pp. 325-336 ◽  
Author(s):  
B.H. Keon ◽  
P.T. Jedrzejewski ◽  
D.L. Paul ◽  
D.A. Goodenough

To further understand the functional role that the F-actin binding protein, drebrin (developmentally regulated brain protein), plays in the regulation of F-actin, we characterized its expression in non-neuronal cells. Using nanoelectrospray mass spectrometry methods, we initially identified drebrin in non-neuronal cultured cells. Using a drebrin-specific monoclonal antibody, we were able to detect drebrin protein in several different cell lines derived from fibroblasts, astrocytomas, and simple epithelia, but not in cell lines derived from stratified epithelia. Double-label immunofluorescence experiments of cultured cell monolayers revealed the localization of drebrin at the apical plasma membrane together with a pool of submembranous F-actin. Immunoblot analysis of mouse organs revealed that, in addition to its high levels of expression in brain, drebrin was present in stomach and to a lesser degree in kidney, colon, and urinary bladder. Drebrin protein detected in the non-brain organs migrated faster through SDS-PAGE gels, indicating that the lower molecular weight embryonic brain isoform (E2) may be the prominent isoform in these organs. RT-PCR experiments confirmed the specific expression of the E2 isoform in adult stomach, kidney, and cultured cells. In situ immunofluorescence experiments revealed a cell-type specific pattern in both stomach and kidney. In stomach, drebrin was specifically expressed in the acid-secreting parietal cells of the fundic glands, where it accumulated at the extended apical membrane of the canaliculi. In kidney, drebrin was expressed in acid-secreting type A intercalated cells, where it localized specifically to the apical plasma membrane. Drebrin was expressed as well in the distal tubule epithelial cells where the protein was concentrated at the luminal surface and present at the interdigitations of the basolateral membranes.


2006 ◽  
Vol 18 (9) ◽  
pp. 2194-2206 ◽  
Author(s):  
Clément Thomas ◽  
Céline Hoffmann ◽  
Monika Dieterle ◽  
Marleen Van Troys ◽  
Christophe Ampe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document