scholarly journals Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans.

1992 ◽  
Vol 3 (11) ◽  
pp. 1199-1213 ◽  
Author(s):  
V Kodoyianni ◽  
E M Maine ◽  
J Kimble

The glp-1 gene encodes a membrane protein required for inductive cell interactions during development of the nematode Caenorhabditis elegans. Here we report the molecular characterization of 15 loss-of-function (lf) mutations of glp-1. Two nonsense mutations appear to eliminate glp-1 activity; both truncate the glp-1 protein in its extracellular domain and have a strong loss-of-function phenotype. Twelve missense mutations and one in-frame deletion map to sites within the repeated motifs of the glp-1 protein (10 epidermal growth factor [EGF]-like and 3 LNG repeats extracellularly and 6 cdc10/SWI6, or ankyrin, repeats intracellularly). We find that all three types of repeated motifs are critical to glp-1 function, and two individual EGF-like repeats may have distinct functions. Intriguingly, all four missense mutations in one phenotypic class map to the N-terminal EGF-like repeats and all six missense mutations in a second phenotypic class reside in the intracellular cdc10/SWI6 repeats. These two clusters of mutations may identify functional domains within the glp-1 protein.

1996 ◽  
Vol 16 (2) ◽  
pp. 529-537 ◽  
Author(s):  
W S Katz ◽  
G M Lesa ◽  
D Yannoukakos ◽  
T R Clandinin ◽  
J Schlessinger ◽  
...  

The let-23 gene encodes a Caenorhabditis elegans homolog of the epidermal growth factor receptor (EGFR) necessary for vulval development. We have characterized a mutation of let-23 that activates the receptor and downstream signal transduction, leading to excess vulval differentiation. This mutation alters a conserved cysteine residue in the extracellular domain and is the first such point mutation in the EGFR subfamily of tyrosine kinases. Mutation of a different cysteine in the same subdomain causes a strong loss-of-function phenotype, suggesting that cysteines in this region are important for function and nonequivalent. Vulval precursor cells can generate either of two subsets of vulval cells (distinct fates) in response to sa62 activity. The fates produced depended on the copy number of the mutation, suggesting that quantitative differences in receptor activity influence the decision between these two fates.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 43-61 ◽  
Author(s):  
T Schedl ◽  
J Kimble

Abstract This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.


1974 ◽  
Vol 249 (7) ◽  
pp. 2188-2194
Author(s):  
John M. Taylor ◽  
William M. Mitchell ◽  
Stanley Cohen

Sign in / Sign up

Export Citation Format

Share Document