scholarly journals Ionic milieu controls the compartment-specific activation of pro-opiomelanocortin processing in AtT-20 cells.

1995 ◽  
Vol 6 (10) ◽  
pp. 1271-1285 ◽  
Author(s):  
W K Schmidt ◽  
H P Moore

Newly synthesized prohormones and their processing enzymes transit through the same compartments before being packaged into regulated secretory granules. Despite this coordinated intracellular transport, prohormone processing does not occur until late in the secretory pathway. In the mouse pituitary AtT-20 cell line, conversion of pro-opiomelanocortin (POMC) to mature adrenocorticotropic hormone involves the prohormone convertase PC1. The mechanism by which this proteolytic processing is restricted to late secretory compartments is unknown; PC1 activity could be regulated by compartment-specific activators/inhibitors, or through changes in the ionic milieu that influence its activity. By arresting transport in a semi-intact cell system, we have addressed whether metabolically labeled POMC trapped in early secretory compartments can be induced to undergo conversion if the ionic milieu in these compartments is experimentally manipulated. Prolonged incubation of labeled POMC trapped in the endoplasmic reticulum or Golgi/trans-Golgi network did not result in processing, thereby supporting the theory that processing is normally a post-Golgi/trans-Golgi network event. However, acidification of these compartments allowed effective processing of POMC to the intermediate and mature forms. The observed processing increased sharply at a pH below 6.0 and required millimolar calcium, regardless of the compartment in which labeled POMC resided. These conditions also resulted in the coordinate conversion of PC1 from the 84/87 kDa into the 74-kDa and 66-kDa forms. We propose that POMC processing is predominantly restricted to acidifying secretory granules, and that a change in pH within these granules is both necessary and sufficient to activate POMC processing.

1994 ◽  
Vol 107 (3) ◽  
pp. 737-745 ◽  
Author(s):  
S.L. Milgram ◽  
R.E. Mains

Vesicular transport within the secretory pathway can be arrested by incubating cells at 15 degrees C or 20 degrees C to block exit from the endoplasmic reticulum or trans-Golgi network, respectively. Using this powerful tool we have compared the intracellular sites of endoproteolytic processing of proopiomelanocortin and two prohormone processing enzymes in AtT-20 mouse pituitary corticotrope tumor cells. For comparison, proopiomelanocortin processing was also evaluated in primary neurointermediate pituitary cultures. AtT-20 cells synthesize and store endogenous proopiomelanocortin and prohormone convertase 1; AtT-20 cells expressing high levels of integral membrane or soluble peptidylglycine alpha-amidating monooxygenase were generated by stable transfection. Cells were incubated with [35S]methionine and chased at 4 degrees C, 15 degrees C, 20 degrees C or 37 degrees C. The endoproteolytic processing of peptidylglycine alpha-amidating mono-oxygenase, prohormone convertase 1, and proopiomelanocortin was compared following immunoprecipitation. Endoproteolytic processing of integral membrane and soluble peptidylglycine alpha-amidating monooxygenase proteins was completely blocked by incubation of cells at 20 degrees C. In contrast, prohormone convertase 1 processing from the 87 kDa precursor to the 81 kDa intermediate proceeded to completion at both 15 degrees C and 20 degrees C, while cleavage to generate the 63 kDa prohormone convertase 1 protein was completely blocked at 20 degrees C. In AtT-20 cells and neurointermediate pituitary cultures, generation of beta-lipotropin from proopiomelanocortin continued at a slow but significant rate at 20 degrees C, while processing of beta-lipotropin to beta-endorphin was blocked. Thus prohormone convertase 1 processing begins in the endoplasmic reticulum and is not completed until after the trans-Golgi network, while peptidylglycine alpha-amidating monooxygenase processing begins after the trans-Golgi network. Selected proopiomelanocortin cleavages begin before entry into immature granules.


1993 ◽  
Vol 106 (3) ◽  
pp. 815-822
Author(s):  
N.J. Bryant ◽  
A. Boyd

One of the Golgi compartments of Saccharomyces cerevisiae is defined by the presence of a specific endoproteinase, Kex2p, which cleaves precursor polypeptides at pairs of basic residues. We have used antibodies directed against the cytoplasmically disposed C-terminal domain of Kex2p to develop an immuno-affinity procedure for the isolation of Kex2p-containing organelles. The method gives a high yield of sealed organelles that are essentially free of contamination from other secretory pathway organelles while being significantly enriched for two other late Golgi enzymes, dipeptidylaminopeptidase A and the Kex1 carboxypeptidase. Our findings provide clear evidence for a single yeast Golgi compartment containing all three late-processing enzymes, which is likely to be the functional equivalent in yeast of the mammalian trans-Golgi network.


1994 ◽  
Vol 107 (3) ◽  
pp. 539-549 ◽  
Author(s):  
C.S. Velez-Granell ◽  
A.E. Arias ◽  
J.A. Torres-Ruiz ◽  
M. Bendayan

Three chaperones, the chaperonins cpn10 and cpn60, and the hsp70 protein, were revealed by immunochemistry and cytochemistry in pancreatic rat acinar cells. Western immunoblotting analysis of rat pancreas homogenates has shown that antibodies against cpn10, cpn60 and hsp70 protein recognize single protein bands of 25 kDa, 60 kDa and 70 kDa, respectively. Single bands for the cpn10 and cpn60 were also detected in pancreatic juice. Immunofluorescence studies on rat pancreatic tissue revealed a strong positive signal in the apical region of the acinar cells for cpn10 and cpn60, while an immunoreaction was detected at the juxtanuclear Golgi region with the anti-hsp70 antibody. Immunocytochemical gold labeling confirmed the presence of these three chaperones in distinct cell compartments of pancreatic acinar cells. Chaperonin 10 and cpn60 were located in the endoplasmic reticulum, Golgi apparatus, condensing vacuoles and secretory granules. Interestingly, the labeling for both cpn10 and cpn60 followed the increasing concentration gradient of secretory proteins along the RER-Golgi-granule secretory pathway. On the contrary, the labeling for hsp70 was mainly concentrated in the endoplasmic reticulum and the Golgi apparatus. In the latter, the hsp70 was found to be primary located in the trans-most cisternae and to colocalize with acid phosphatase in the trans-Golgi network. The three chaperones were also present in mitochondria. In view of the role played by the chaperones in the proper folding, sorting and aggregation of proteins, we postulate that hsp70 assists the adequate sorting and packaging of proteins from the ER to the trans-Golgi network while cpn10 and cpn60 play key roles in the proper packaging and aggregation of secretory proteins as well as, most probably, in the prevention of early enzyme activation in secretory granules.


1997 ◽  
Vol 323 (2) ◽  
pp. 445-450 ◽  
Author(s):  
Paul C. GUEST ◽  
Elaine M. BAILYES ◽  
John C. HUTTON

The role of intracellular Ca2+ in the proteolytic processing and intracellular transport of secretory granule proproteins was investigated by pulse–chase radiolabelling of isolated rat islets of Langerhans. The conversion of proinsulin was inhibited by depletion of medium Ca2+ with EGTA and by blocking the transport of Ca2+ into cells with the Ca2+-channel antagonists verapamil, nifedipine and NiCl2. Proinsulin conversion was also reduced by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, indicating that the process requires transport of Ca2+ into the endoplasmic reticulum. This was supported by the finding that proinsulin processing was inhibited when Ca2+ was depleted before or during pulse-labelling, but not after transport of the protein to post-endoplasmic-reticulum compartments. Similarly, the inhibition of proinsulin processing was reversed by re-introduction of medium Ca2+ around the time of radiolabelling, but not after 15 min of chase incubation. Ca2+ depletion also decreased proteolytic maturation of the prohormone convertases PC1, PC2 and carboxypeptidase H. Secretion experiments suggested that the rate and extent of proinsulin transport into secretory granules were inhibited marginally by Ca2+ depletion, whereas those of the convertases were markedly impeded. Inhibition of proinsulin conversion by Ca2+ depletion was thus not simply related to the Ca2+-dependencies of mature PC1 and PC2, but also to a requirement for endoplasmic reticulum Ca2+ in proteolytic maturation of the convertases and in their transfer to secretory granules. The results also suggest that the Ca2+ required for prohormone processing in the granules enters the secretory pathway via the endoplasmic reticulum.


1997 ◽  
Vol 45 (3) ◽  
pp. 425-436 ◽  
Author(s):  
Shigeyasu Tanaka ◽  
Takao Yora ◽  
Kazuhisa Nakayama ◽  
Kinji Inoue ◽  
Kazumasa Kurosumi

Using antibodies specific for pro-opiomelanocortin (POMC), amidated joining peptide (JP), and the prohormone convertase PC1, we showed immunocytochemically that PC1 in a corticotrophic tumor cell line, AtT-20, was co-localized either with POMC or with amidated JP in secretory granules, and also confirmed that POMC was cleaved mainly in secretory granules. Analysis using DAMP (3- [2,4-dinitroanilino]-3'-amino- N-methyldipropylamine) as the pH probe suggested a correlation between POMC processing and acidic pH in the secretory granules. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-AT-Pase, completely inhibited POMC processing and caused constitutive secretion of the unprocessed precursor. By contrast, chloroquine, a weak base that is known to neutralize acidic organelles, was unable to inhibit POMC processing. Electron microscopic analysis revealed that, in AtT-20 cells treated with bafilomycin A1, the trans-Golgi cisternae were dilated and few secretory granules were present in the cytoplasm. These observations suggest that acidic pH provides a favorable environment for proteolytic processing of POMC by PC1 but is not required, and that integrity of the trans-Golgi network and sorting of POMC into secretory granules are important for POMC processing. (J Histochem Cytochem 45:425–436, 1997)


2020 ◽  
Vol 31 (3) ◽  
pp. 157-166 ◽  
Author(s):  
Blake H. Hummer ◽  
Drew Maslar ◽  
Margarita Soltero-Gutierrez ◽  
Noah F. de Leeuw ◽  
Cedric S. Asensio

Formation of secretory granules (SGs) occurs at the trans-Golgi network (TGN). Here we show that transmembrane SG cargoes (phogrin and VMAT2) do not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step, suggesting a more complex model of SG biogenesis than anticipated.


2012 ◽  
Vol 23 (12) ◽  
pp. 2339-2351 ◽  
Author(s):  
Yogikala Prabhu ◽  
Patricia V. Burgos ◽  
Christina Schindler ◽  
Ginny G. Farías ◽  
Javier G. Magadán ◽  
...  

The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.


1998 ◽  
Vol 274 (1) ◽  
pp. C262-C271 ◽  
Author(s):  
P. Robin ◽  
B. Rossignol ◽  
M. N. Raymond

We tested the effect of H-89, a protein kinase A (PKA) inhibitor, on the intracellular transit of the regulated secretory proteins in rat lacrimal glands. We show that H-89, by itself, induces the secretion of newly synthesized proteins trafficking in its presence but not of proteins already stored in the mature secretory granules. This secretion does not depend on the presence of extracellular Ca2+. The proteins released are identical to those secreted after cholinergic stimulation or under the action of the ionophore A-23187, but the secretion level is ∼40% lower. The effect of H-89 seems to be due to PKA inhibition because other protein kinase inhibitors (calphostin C, chelerythrine, H-85) do not induce secretion. We further show that H-89 does not modify the rate of glycoprotein galactosylation but induces the secretion of newly galactosylated glycoproteins. Finally, we used a “20°C block” procedure to show that H-89 affects a trans-Golgi network (TGN) or post-TGN step of the secretory pathway. Our results demonstrate that, in lacrimal cells, H-89 affects the intracellular trafficking of secretory proteins, suggesting a role for PKA in this process.


2000 ◽  
Vol 151 (6) ◽  
pp. 1207-1220 ◽  
Author(s):  
Mona Wilcke ◽  
Ludger Johannes ◽  
Thierry Galli ◽  
Véronique Mayau ◽  
Bruno Goud ◽  
...  

Several GTPases of the Rab family, known to be regulators of membrane traffic between organelles, have been described and localized to various intracellular compartments. Rab11 has previously been reported to be associated with the pericentriolar recycling compartment, post-Golgi vesicles, and the trans-Golgi network (TGN). We compared the effect of overexpression of wild-type and mutant forms of Rab11 on the different intracellular transport steps in the endocytic/degradative and the biosynthetic/exocytic pathways in HeLa cells. We also studied transport from endosomes to the Golgi apparatus using the Shiga toxin B subunit (STxB) and TGN38 as reporter molecules. Overexpression of both Rab11 wild-type (Rab11wt) and mutants altered the localization of the transferrrin receptor (TfR), internalized Tf, the STxB, and TGN38. In cells overexpressing Rab11wt and in a GTPase-deficient Rab11 mutant (Rab11Q70L), these proteins were found in vesicles showing characteristics of sorting endosomes lacking cellubrevin (Cb). In contrast, they were redistributed into an extended tubular network, together with Cb, in cells overexpressing a dominant negative mutant of Rab11 (Rab11S25N). This tubularized compartment was not accessible to Tf internalized at temperatures <20°C, suggesting that it is of recycling endosomal origin. Overexpression of Rab11wt, Rab11Q70L, and Rab11S25N also inhibited STxB and TGN38 transport from endosomes to the TGN. These results suggest that Rab11 influences endosome to TGN trafficking primarily by regulating membrane distribution inside the early endosomal pathway.


Sign in / Sign up

Export Citation Format

Share Document