scholarly journals Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II.

1996 ◽  
Vol 7 (6) ◽  
pp. 883-892 ◽  
Author(s):  
C Y Chung ◽  
J E Murphy-Ullrich ◽  
H P Erickson

In a previous study we demonstrated that the alternatively spliced region of tenascin-C, TNfnA-D, bound with high affinity to a cell surface receptor, annexin II. In the present study we demonstrate three changes in cellular activity that are produced by adding intact tenascin-C or TNfnA-D to cells, and we show that all three activities are blocked by antibodies against annexin II. 1) TNfnA-D added to confluent endothelial cells induced loss of focal adhesions. 2) TNfnA-D produced a mitogenic response of confluent, growth-arrested endothelial cells in 1% serum. TNfnA-D stimulated mitogenesis only when it was added to cells before or during exposure to other mitogens, such as basic fibroblast growth factor or serum. Thus the effect of TNfnA-D seems to be to facilitate the subsequent response to growth factors. 3) TNfnA-D enhanced cell migration in a cell culture wound assay. Antibodies to annexin II blocked all three cellular responses to TNfnA-D. These data show that annexin II receptors on endothelial cells mediate several cell regulatory functions attributed to tenascin-C, potentially through modulation of intracellular signalling pathways.

1994 ◽  
Vol 126 (2) ◽  
pp. 539-548 ◽  
Author(s):  
C Y Chung ◽  
H P Erickson

We have investigated the binding of soluble tenascin-C (TN-C) to several cell lines using a radioligand binding assay. Specific binding was demonstrated to U-251MG human glioma cells and to a line of bovine aortic endothelial cells, but hamster fibroblasts showed no specific binding. Recombinant proteins corresponding to specific domains of TN-C were used to map the binding site(s) in TN-C. The alternatively spliced segment (TNfnA-D) inhibited the binding of native TN-C most strongly, and itself bound to glioma and endothelial cells. Scatchard analysis of TNfnA-D binding indicated 2-5 x 10(5) binding sites per cell, with an apparent 2 nM dissociation constant. The cell surface receptor for TNfnA-D was identified as a 35-kD protein on the basis of blot binding assays and affinity chromatography of membrane extracts on native TN-C and TNfnA-D columns. Protein sequencing indicated that this 35-kD receptor was annexin II. Annexin II is well characterized as a cytoplasmic protein, so it was surprising to find it as a presumably extracellular receptor for TN-C. To confirm that it was the 35-kD receptor, we obtained purified annexin II and demonstrated its binding to TNfnA-D and TN-C at nM concentrations. Antibodies to annexin II prominently stained the external surface of live endothelial cells and blocked the binding of TNfnA-D to the cells. Thus annexin II appears to be a receptor for the alternatively spliced segment of TN-C, and may mediate cellular responses to soluble TN-C in the extracellular matrix.


2006 ◽  
Vol 14 (7S_Part_27) ◽  
pp. P1453-P1454
Author(s):  
Nicola J. Corbett ◽  
Kate Fisher ◽  
Helen A. Rowland ◽  
Alys C. Jones ◽  
Nigel M. Hooper

2008 ◽  
Vol 20 (9) ◽  
pp. 30
Author(s):  
M. Gamat ◽  
M. B. Renfree ◽  
A. J. Pask ◽  
G. Shaw

Androgens induce the differentiation of the urogenital sinus (UGS) to form a prostate. An early marker of this response is upregulation of the transcription factor Nkx3.1 in the urogenital epithelium in the precursors of prostatic buds. In tammars, prostate differentiation begins ~3 weeks after birth and after the time the testis starts to secrete androgens, and 2 weeks after androgen stimulated Wolffian duct differentiation. The reason for this delay in prostate differentiation is unexplained. Androgen receptors are present in the UGS, and the potent androgen, androstanediol, induces prostatic development in females. Whilst androgens may diffuse into cells by across the cell membrane, there is increasing evidence that steroids are also internalised actively via the cell-surface transport molecule Megalin. We are exploring the possibility that the delay may be related to the establishment of a Megalin-mediated pathway. Megalin is a cell surface receptor expressed on epithelia and mediates the endocytosis of a wide range of ligands, including SHBG-bound sex steroids. Megalin action is regulated by Receptor Associated Protein (RAP), which acts as an antagonist to Megalin action. This study cloned partial sequences of Megalin, RAP and Nkx3.1 and examined their expression in the developing urogenital sinus of the tammar wallaby using RT–PCR. The cellular distribution of Megalin protein in the developing UGS was examined using immunohistochemistry. Megalin, RAP and Nkx3.1 in the tammar were all highly conserved with eutherian orthologueues. Megalin and Nkx3.1 transcripts were detected in the liver, kidney, ovary, testis and developing urogenital sinus of male and female tammars. In the developing UGS of the tammar, there was strong staining for Megalin protein in the urogenital epithelium with some diffuse staining in the surrounding mesenchyme. Together, these results suggest that Megalin could be a key gene in the mediation of androgen action in prostatic development in the tammar wallaby.


1986 ◽  
Vol 51 (0) ◽  
pp. 703-711 ◽  
Author(s):  
J.S. McDougal ◽  
P.J. Maddon ◽  
A.G. Dalgleish ◽  
P.R. Clapham ◽  
D.R. Littman ◽  
...  

Nature ◽  
1988 ◽  
Vol 334 (6184) ◽  
pp. 708-712 ◽  
Author(s):  
Sujay Singh ◽  
David G. Lowe ◽  
David S. Thorpe ◽  
Henry Rodriguez ◽  
Wun-Jing Kuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document