kdel receptor
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 24)

H-INDEX

30
(FIVE YEARS 3)

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xihua Yue ◽  
Yi Qian ◽  
Lianhui Zhu ◽  
Bopil Gim ◽  
Mengjing Bao ◽  
...  

Abstract Background KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. Results We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re-localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi. Conclusions These results suggest that ACBD3 may function as a negative regulator of PKA activity on KDEL receptor, thereby restricting its retrograde trafficking in the absence of KDEL ligand binding. Since ACBD3 was originally identified as PAP7, a PBR/PKA-interacting protein at the Golgi/mitochondria, we propose that Golgi-localization of KDEL receptor is likely to be controlled by its interaction with ACBD3/PKA complex at steady state, providing a novel insight for establishment of cellular homeostasis in the early secretory pathway.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Andreas Gerondopoulos ◽  
Philipp Bräuer ◽  
Tomoaki Sobajima ◽  
Zhiyi Wu ◽  
Joanne L Parker ◽  
...  

ER proteins of widely differing abundance are retrieved from the Golgi by the KDEL-receptor. Abundant ER proteins tend to have KDEL rather than HDEL signals, whereas ADEL and DDEL are not used in most organisms. Here, we explore the mechanism of selective retrieval signal capture by the KDEL-receptor and how HDEL binds with ten-fold higher affinity than KDEL. Our results show the carboxyl-terminus of the retrieval signal moves along a ladder of arginine residues as it enters the binding pocket of the receptor. Gatekeeper residues D50 and E117 at the entrance of this pocket exclude ADEL and DDEL sequences. D50N/E117Q mutation of human KDEL-receptors changes the selectivity to ADEL and DDEL. However, further analysis of HDEL, KDEL and RDEL-bound receptor structures shows that affinity differences are explained by interactions between the variable -4 H/K/R position of the signal and W120, rather than D50 or E117. Together, these findings explain KDEL-receptor selectivity, and how signal variants increase dynamic range to support efficient ER retrieval of low and high abundance proteins.


2021 ◽  
Author(s):  
Andreas Gerondopoulos ◽  
Philipp Bräuer ◽  
Tomoaki Sobajima ◽  
Zhiyu Wu ◽  
Joanne L Parker ◽  
...  

The KDEL-retrieval pathway captures escaped ER proteins with a KDEL or variant C-terminal signal at acidic pH in the Golgi and releases them at neutral pH in the ER. To address the mechanism of signal binding and the molecular basis for differences in signal affinity, we determined the HDEL and RDEL bound structures of the KDEL-receptor. Affinity differences are explained by interactions between the variable -4 position of the signal and W120, whereas initial capture of retrieval signals by their carboxyl-terminus is mediated by a baton-relay mechanism involving a series of conserved arginine residues in the receptor. This explains how the signal is first captured and then pulled into the binding cavity. During capture, retrieval signals undergo a selective proofreading step involving two gatekeeper residues D50 and E117 in the receptor. These mechanisms operate upstream of the pH-dependent closure of the receptor and explain the selectivity of the KDEL-retrieval pathway.


2021 ◽  
Vol 120 (3) ◽  
pp. 210a-211a
Author(s):  
Asma Rehman ◽  
Amanda Altieri ◽  
Wenbo Yu ◽  
Stefan M. Ivanov ◽  
Brian G. Pierce ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Leonardo Maciel ◽  
Dahienne Ferreira de Oliveira ◽  
Fernanda Mesquita ◽  
Hercules Antônio da Silva Souza ◽  
Leandro Oliveira ◽  
...  

Background CDNF (cerebral dopamine neurotrophic factor) belongs to a new family of neurotrophic factors that exert systemic beneficial effects beyond the brain. Little is known about the role of CDNF in the cardiac context. Herein we investigated the effects of CDNF under endoplasmic reticulum‐stress conditions using cardiomyocytes (humans and mice) and isolated rat hearts, as well as in rats subjected to ischemia/reperfusion (I/R). Methods and Results We showed that CDNF is secreted by cardiomyocytes stressed by thapsigargin and by isolated hearts subjected to I/R. Recombinant CDNF (exoCDNF) protected human and mouse cardiomyocytes against endoplasmic reticulum stress and restored the calcium transient. In isolated hearts subjected to I/R, exoCDNF avoided mitochondrial impairment and reduced the infarct area to 19% when administered before ischemia and to 25% when administered at the beginning of reperfusion, compared with an infarct area of 42% in the untreated I/R group. This protection was completely abrogated by AKT (protein kinase B) inhibitor. Heptapeptides containing the KDEL sequence, which binds to the KDEL‐R (KDEL receptor), abolished exoCDNF beneficial effects, suggesting the participation of KDEL‐R in this cardioprotection. CDNF administered intraperitoneally to rats decreased the infarct area in an in vivo model of I/R (from an infarct area of ≈44% in the I/R group to an infarct area of ≈27%). Moreover, a shorter version of CDNF, which lacks the last 4 residues (CDNF‐ΔKTEL) and thus allows CDNF binding to KDEL‐R, presented no cardioprotective activity in isolated hearts. Conclusions This is the first study to propose CDNF as a new cardiomyokine that induces cardioprotection via KDEL receptor binding and PI3K/AKT activation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyi Wu ◽  
Simon Newstead ◽  
Philip C. Biggin

Abstract The endoplasmic reticulum (ER) is the main site of protein synthesis in eukaryotic cells and requires a high concentration of luminal chaperones to function. During protein synthesis, ER luminal chaperones are swept along the secretory pathway and must be retrieved to maintain cell viability. ER protein retrieval is achieved by the KDEL receptor, which recognises a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence. Recognition of ER proteins by the KDEL receptor is pH dependent, with binding occurring under acidic conditions in the Golgi and release under conditions of higher pH in the ER. Recent crystal structures of the KDEL receptor in the apo and peptide bound state suggested that peptide binding drives the formation of a short-hydrogen bond that locks the KDEL sequence in the receptor and activates the receptor for COPI binding in the cytoplasm. Using quantum mechanical calculations we demonstrate that the strength of this short hydrogen bond is reinforced following protonation of a nearby histidine, providing a conceptual link between receptor protonation and KDEL peptide binding. Protonation also controls the water networks adjacent to the peptide binding site, leading to a conformational change that ultimately allows the receptor-complex to be recognized by the COPI system.


2020 ◽  
Author(s):  
Zhiyi Wu ◽  
Simon Newstead ◽  
Philip C. Biggin

AbstractThe endoplasmic reticulum (ER) is the main site of protein synthesis in eukaryotic cells and requires a high concentration of luminal chaperones to function. During protein synthesis, ER luminal chaperones are swept along the secretory pathway and must be retrieved to maintain cell viability. ER protein retrieval is achieved by the KDEL receptor, which recognises a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence. Recognition of ER proteins by the KDEL receptor is pH dependent, with binding occurring under acidic conditions in the Golgi and release under conditions of higher pH in the ER. Recent crystal structures of the KDEL receptor in the apo and peptide bound state suggested that peptide binding drives the formation of a short-hydrogen bond that locks the KDEL sequence in the receptor and activates the receptor for COPI binding in the cytoplasm. Using quantum mechanical calculations we demonstrate that the strength of this short hydrogen bond is reinforced following protonation of a nearby histidine, linking receptor protonation to high affinity peptide binding. Protonation also controls the wetting of a cavity adjacent to the peptide binding site, leading to a conformational change that ultimately allows the complex to be recognized by the COPI system.


PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235864
Author(s):  
Achim Bauer ◽  
Ludger Santen ◽  
Manfred J. Schmitt ◽  
M. Reza Shaebani ◽  
Björn Becker

Sign in / Sign up

Export Citation Format

Share Document