scholarly journals Evidence that mating by the Saccharomyces cerevisiae gpa1Val50 mutant occurs through the default mating pathway and a suggestion of a role for ubiquitin-mediated proteolysis.

1997 ◽  
Vol 8 (9) ◽  
pp. 1649-1664 ◽  
Author(s):  
B E Xu ◽  
J Kurjan

The yeast G alpha subunit, Gpa1p, plays a negative role in the pheromone response pathway. The gpa1Val50 mutant was previously shown to have a growth defect, consistent with the GTPase defect predicted for this mutation, and greatly reduced mating. Various explanations for the mating defect have been proposed. One approach to analyze the gpa1Val50 mating defect involved epistasis analysis. The low mating of the gpa1Val50 mutant was independent of the pheromone receptor; therefore, it results from intracellular activation of the pathway, consistent with a GTPase defect. This result suggests that gpa1Val50 mating occurs through the default rather than the chemotropic pathway involved in pheromone response. We therefore tested the effect of a spa2 mutation on gpa1Val50 mating, because Spa2p has been implicated in the default pathway. The spa2 mutation greatly reduced the mating of the gpa1Val50 mutant, suggesting that gpa1Val50 mating occurs predominantly through the default pathway. In a second approach to investigate the gpa1Val50 phenotypes, suppressors of the gpa1Val50 mating defect were isolated. Two suppressor genes corresponded to SON1/UFD5 and SEN3, which are implicated in ubiquitin-mediated proteolysis. On the basis of these results, we suggest that a positive component of the default mating pathway is subject to ubiquitin-mediated degradation.

2000 ◽  
Vol 25 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Junko Nakajima-Shimada ◽  
Shuichi Sakaguchi ◽  
Frederick I. Tsuji ◽  
Yasuhiro Anraku ◽  
Hidetoshi Iida

2001 ◽  
Vol 183 (1) ◽  
pp. 229-234 ◽  
Author(s):  
Alma L. Saviñón-Tejeda ◽  
Laura Ongay-Larios ◽  
Julián Valdés-Rodrı́guez ◽  
Roberto Coria

ABSTRACT The cloning of the gene encoding the KlGpa1p subunit was achieved by standard PCR techniques and by screening a Kluyveromyces lactis genomic library using the PCR product as a probe. The full-length open reading frame spans 1,344 nucleotides including the stop codon. The deduced primary structure of the protein (447 amino acid residues) strongly resembles that of Gpa1p, the G-protein α subunit from Saccharomyces cerevisiae involved in the mating pheromone response pathway. Nevertheless, unlike disruption ofGpa1 from S. cerevisiae, disruption ofKlGpa1 rendered viable cells with a reduced capacity to mate. Expression of a plasmidic KlGpa1 copy in a ΔKlgpa1 mutant restores full mating competence; hence we conclude that KlGpa1p plays a positive role in the mating pathway. Overexpression of the constitutive subunit KlGpa1p(K364) (GTP bound) does not induce constitutive mating; instead it partially blocks wild-type mating and is unable to reverse the sterile phenotype of ΔKlgpa1 mutant cells. K. lactis expresses a second Gα subunit, KlGpa2p, which is involved in regulating cyclic AMP levels upon glucose stimulation. This subunit does not rescue ΔKlgpa1 cells from sterility; instead, overproduction of KlGpa2p slightly reduces the mating of wild-type cells, suggesting cross talk within the pheromone response pathway mediated by KlGpa1p and glucose metabolism mediated by KlGpa2p. The ΔKlgpa1 ΔKlgpa2 double mutant, although viable, showed the mating deficiency observed in the single ΔKlgpa1 mutant.


mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Song Yi ◽  
Nidhi Sahni ◽  
Karla J. Daniels ◽  
Kevin L. Lu ◽  
Guanghua Huang ◽  
...  

ABSTRACTAmong the hemiascomycetes, onlyCandida albicansmust switch from the white phenotype to the opaque phenotype to mate. In the recent evolution of this transition, mating-incompetent white cells acquired a unique response to mating pheromone, resulting in the formation of a white cell biofilm that facilitates mating. All of the upstream components of the white cell response pathway so far analyzed have been shown to be derived from the ancestral pathway involved in mating, except for the mitogen-activated protein (MAP) kinase scaffold protein, which had not been identified. Here, through binding and mutational studies, it is demonstrated that in both the opaque and the white cell pheromone responses, Cst5 is the scaffold protein, supporting the evolutionary scenario proposed. Although Cst5 plays the same role in tethering the MAP kinases as Ste5 does inSaccharomyces cerevisiae, Cst5 is approximately one-third the size and has only one rather than four phosphorylation sites involved in activation and cytoplasmic relocalization.IMPORTANCECandida albicansmust switch from white to opaque to mate. Opaque cells then release pheromone, which not only induces cells to mate but also in a unique fashion induces mating-incompetent white cells to form biofilms that facilitate opaque cell mating. All of the tested upstream components of the newly evolved white cell pheromone response pathway, from the receptor to the mitogen-activated protein (MAP) kinase cascade, are the same as those of the conserved opaque cell response pathway. One key element, however, remained unidentified, the scaffold protein for the kinase cascade. Here, we demonstrate that Cst5, a homolog of theSaccharomyces cerevisiaescaffold protein Ste5, functions as the scaffold protein in both the opaque and the white cell pheromone responses. Pheromone induces Cst5 phosphorylation, which is involved in activation and cytoplasmic localization of Cst5. However, Cst5 contains only one phosphorylation site, not four as in theS. cerevisiaeortholog Ste5. These results support the hypothesis that the entire upper portion of the newly evolved white cell pheromone response pathway is derived from the conserved pheromone response pathway in the mating process.


2002 ◽  
Vol 1 (6) ◽  
pp. 884-894 ◽  
Author(s):  
Paul J. Cullen ◽  
George F. Sprague

ABSTRACT A genetic selection in Saccharomyces cerevisiae for mutants that stimulate the mating pathway uncovered a mutant that had a hyperactive pheromone response pathway and also had hyperpolarized growth. Cloning and segregation analysis demonstrated that BUD14 was the affected gene. Disruption of BUD14 in wild-type cells caused mild stimulation of pheromone response pathway reporters, an increase in sensitivity to mating factor, and a hyperelongated shmoo morphology. The bud14 mutant also had hyperfilamentous growth. Consistent with a role in the control of cell polarity, a Bud14p-green fluorescent protein fusion was localized to sites of polarized growth in the cell. Bud14p shared morphogenetic functions with the Ste20p and Bni1p proteins as well as with the type 1 phosphatase Glc7p. The genetic interactions between BUD14 and GLC7 suggested a role for Glc7p in filamentous growth, and Glc7p was found to have a positive function in filamentous growth in yeast.


1990 ◽  
Vol 10 (6) ◽  
pp. 2966-2972
Author(s):  
M de Barros Lopes ◽  
J Y Ho ◽  
S I Reed

Conditional mutations in the genes CDC36 and CDC39 cause arrest in the G1 phase of the Saccharomyces cerevisiae cell cycle at the restrictive temperature. We present evidence that this arrest is a consequence of a mutational activation of the mating pheromone response. cdc36 and cdc39 mutants expressed pheromone-inducible genes in the absence of pheromone and conjugated in the absence of a mating pheromone receptor. On the other hand, cells lacking the G beta subunit or overproducing the G alpha subunit of the transducing G protein that couples the receptor to the pheromone response pathway prevented constitutive activation of the pathway in cdc36 and cdc39 mutants. These epistasis relationships imply that the CDC36 and CDC39 gene products act at the level of the transducing G protein. The CDC36 and CDC39 gene products have a role in cellular processes other than the mating pheromone response. A mating-type heterozygous diploid cell, homozygous for either the cdc36 or cdc39 mutation, does not exhibit the G1 arrest phenotype but arrests asynchronously with respect to the cell cycle. A similar asynchronous arrest was observed in cdc36 and cdc39 cells where the pheromone response pathway had been inactivated by mutations in the transducing G protein. Furthermore, cdc36 and cdc39 mutants, when grown on carbon catabolite-derepressing medium, did not arrest in G1 and did not induce pheromone-specific genes at the restrictive temperature.


1996 ◽  
Vol 16 (8) ◽  
pp. 3990-4002 ◽  
Author(s):  
L J Kurihara ◽  
B G Stewart ◽  
A E Gammie ◽  
M D Rose

Karyogamy is the process whereby two haploid nuclei fuse to form a diploid nucleus during mating in Saccharomyces cerevisiae. Here, we describe the characterization of the KAR4 gene, previously identified in a screen for new nuclear fusion-defective mutants. During mating, kar4 mutants were defective for the microtubule-dependent movement of nuclei, a phenotype identical to that of mutations in KAR3 and CIK1. Consistent with its mutant phenotype, we found that the kar4 mutation resulted in failure to induce KAR3 and CIK1 mRNA during mating. Expression of KAR3 and CIK1 under independent regulatory control suppressed the kar4 defect, indicating that KAR4 is required primarily for the induction of KAR3 and CIK1. KAR4 was also required for meiosis, during which it may regulate KAR3; however, mitotic expression of KAR3 and CIK1 during S/G2 phase was independent of KAR4. A 30-bp region upstream of KAR3 conferred both KAR4- and STE12-dependent induction by mating pheromone. This region contained one moderate and two weak matches to the consensus pheromone response element to which the Ste12p transcriptional activator binds and five repeats of the sequence CAAA(A). Overproduction of Ste12p suppressed the kar4 defect in KAR3 induction and nuclear fusion. In contrast, Ste12p-independent expression of Kar4p did not alleviate the requirement for Ste12p during KAR3 induction. We propose that Kar4p assists Ste12p in the pheromone-dependent expression of KAR3 and CIK1. KAR4 defines a novel level of regulation for the pheromone response pathway, acting at a subset of Stel2p-inducible genes required for karyogamy.


2012 ◽  
Vol 151 (5) ◽  
pp. 551-557 ◽  
Author(s):  
Keisuke Hara ◽  
Takuya Ono ◽  
Kouichi Kuroda ◽  
Mitsuyoshi Ueda

Sign in / Sign up

Export Citation Format

Share Document