scholarly journals A Fourth Component of the Fission Yeast γ-Tubulin Complex, Alp16, Is Required for Cytoplasmic Microtubule Integrity and Becomes Indispensable When γ-Tubulin Function Is Compromised

2002 ◽  
Vol 13 (7) ◽  
pp. 2360-2373 ◽  
Author(s):  
Akiko Fujita ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Takashi Toda

γ-Tubulin functions as a multiprotein complex, called the γ-tubulin complex (γ-TuC), and composes the microtubule organizing center (MTOC). Fission yeast Alp4 and Alp6 are homologues of two conserved γ-TuC proteins, hGCP2 and hGCP3, respectively. We isolated a novel gene, alp16 + , as a multicopy suppressor of temperature-sensitive alp6-719mutants. alp16 + encodes a 759-amino-acid protein with two conserved regions found in all other members of γ-TuC components. In addition, Alp16 contains an additional motif, which shows homology to hGCP6/Xgrip210. Gene disruption shows that alp16 + is not essential for cell viability. However, alp16 deletion displays abnormally long cytoplasmic microtubules, which curve around the cell tip. Furthermore, alp16-deleted mutants are hypersensitive to microtubule-depolymerizing drugs and synthetically lethal with either temperature-sensitive alp4-225,alp4-1891, or alp6-719 mutants. Overproduction of Alp16 is lethal, with defective phenotypes very similar to loss of Alp4 or Alp6. Alp16 localizes to the spindle pole body throughout the cell cycle and to the equatorial MTOC at postanaphase. Alp16 coimmunoprecipitates with γ-tubulin and cosediments with the γ-TuC in a large complex (>20 S). Alp16 is, however, not required for the formation of this large complex. We discuss evolutional conservation and divergence of structure and function of the γ-TuC between yeast and higher eukaryotes.

2013 ◽  
Vol 24 (18) ◽  
pp. 2894-2906 ◽  
Author(s):  
Hirohisa Masuda ◽  
Risa Mori ◽  
Masashi Yukawa ◽  
Takashi Toda

γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.


1998 ◽  
Vol 9 (8) ◽  
pp. 2201-2216 ◽  
Author(s):  
Thu Nguyen ◽  
Dani B.N. Vinh ◽  
Douglas K. Crawford ◽  
Trisha N. Davis

The spindle pole body (SPB) in Saccharomyces cerevisiae functions as the microtubule-organizing center. Spc110p is an essential structural component of the SPB and spans between the central and inner plaques of this multilamellar organelle. The amino terminus of Spc110p faces the inner plaque, the substructure from which spindle microtubules radiate. We have undertaken a synthetic lethal screen to identify mutations that enhance the phenotype of the temperature-sensitive spc110–221 allele, which encodes mutations in the amino terminus. The screen identified mutations inSPC97 and SPC98, two genes encoding components of the Tub4p complex in yeast. The spc98–63allele is synthetic lethal only with spc110 alleles that encode mutations in the N terminus of Spc110p. In contrast, thespc97 alleles are synthetic lethal withspc110 alleles that encode mutations in either the N terminus or the C terminus. Using the two-hybrid assay, we show that the interactions of Spc110p with Spc97p and Spc98p are not equivalent. The N terminus of Spc110p displays a robust interaction with Spc98p in two different two-hybrid assays, while the interaction between Spc97p and Spc110p is not detectable in one strain and gives a weak signal in the other. Extra copies of SPC98 enhance the interaction between Spc97p and Spc110p, while extra copies of SPC97interfere with the interaction between Spc98p and Spc110p. By testing the interactions between mutant proteins, we show that the lethal phenotype in spc98–63 spc110–221 cells is caused by the failure of Spc98–63p to interact with Spc110–221p. In contrast, the lethal phenotype in spc97–62 spc110–221 cells can be attributed to a decreased interaction between Spc97–62p and Spc98p. Together, these studies provide evidence that Spc110p directly links the Tub4p complex to the SPB. Moreover, an interaction between Spc98p and the amino-terminal region of Spc110p is a critical component of the linkage, whereas the interaction between Spc97p and Spc110p is dependent on Spc98p.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 407-422 ◽  
Author(s):  
E A Vallen ◽  
W Ho ◽  
M Winey ◽  
M D Rose

Abstract KAR1 encodes an essential component of the yeast spindle pole body (SPB) that is required for karyogamy and SPB duplication. A temperature-sensitive mutation, kar1-delta 17, mapped to a region required for SPB duplication and for localization to the SPB. To identify interacting SPB proteins, we isolated 13 dominant mutations and 3 high copy number plasmids that suppressed the temperature sensitivity of kar1-delta 17. Eleven extragenic suppressor mutations mapped to two linkage groups, DSK1 and DSK2. The extragenic suppressors were specific for SPB duplication and did not suppress karyogamy-defective alleles. The major class, DSK1, consisted of mutations in CDC31. CDC31 is required for SPB duplication and encodes a calmodulin-like protein that is most closely related to caltractin/centrin, a protein associated with the Chlamydomonas basal body. The high copy number suppressor plasmids contained the wild-type CDC31 gene. One CDC31 suppressor allele conferred a temperature-sensitive defect in SPB duplication, which was counter-suppressed by recessive mutations in KAR1. In spite of the evidence for a direct interaction, the strongest CDC31 alleles, as well as both DSK2 alleles, suppressed a complete deletion of KAR1. However, the CDC31 alleles also made the cell supersensitive to KAR1 gene dosage, arguing against a simple bypass mechanism of suppression. We propose a model in which Kar1p helps localize Cdc31p to the SPB and that Cdc31p then initiates SPB duplication via interaction with a downstream effector.


2010 ◽  
Vol 21 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Claudia Lang ◽  
Sandrine Grava ◽  
Tineke van den Hoorn ◽  
Rhonda Trimble ◽  
Peter Philippsen ◽  
...  

We investigated the migration of multiple nuclei in hyphae of the filamentous fungus Ashbya gossypii. Three types of cytoplasmic microtubule (cMT)-dependent nuclear movements were characterized using live cell imaging: short-range oscillations (up to 4.5 μm/min), rotations (up to 180° in 30 s), and long-range nuclear bypassing (up to 9 μm/min). These movements were superimposed on a cMT-independent mode of nuclear migration, cotransport with the cytoplasmic stream. This latter mode is sufficient to support wild-type-like hyphal growth speeds. cMT-dependent nuclear movements were led by a nuclear-associated microtubule-organizing center, the spindle pole body (SPB), which is the sole site of microtubule nucleation in A. gossypii. Analysis of A. gossypii SPBs by electron microscopy revealed an overall laminar structure similar to the budding yeast SPB but with distinct differences at the cytoplasmic side. Up to six perpendicular and tangential cMTs emanated from a more spherical outer plaque. The perpendicular and tangential cMTs most likely correspond to short, often cortex-associated cMTs and to long, hyphal growth-axis–oriented cMTs, respectively, seen by in vivo imaging. Each SPB nucleates its own array of cMTs, and the lack of overlapping cMT arrays between neighboring nuclei explains the autonomous nuclear oscillations and bypassing observed in A. gossypii hyphae.


2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


2001 ◽  
Vol 114 (13) ◽  
pp. 2427-2435 ◽  
Author(s):  
Bunshiro Goto ◽  
Koei Okazaki ◽  
Osami Niwa

Chromosomes are not packed randomly in the nucleus. The Rabl orientation is an example of the non-random arrangement of chromosomes, centromeres are grouped in a limited area near the nuclear periphery and telomeres are located apart from centromeres. This orientation is established during mitosis and maintained through subsequent interphase in a range of species. We report that a Rabl-like configuration can be formed de novo without a preceding mitosis during the transition from the sexual phase to the vegetative phase of the life cycle in fission yeast. In this process, each of the dispersed centromeres is often associated with a novel Sad1-containing body that is contacting a cytoplasmic microtubule laterally (Sad1 is a component of the spindle pole body (SPB)). The Sad1-containing body was colocalized with other known SPB components, Kms1 and Spo15 but not with Cut12, indicating that it represents a novel SPB-related complex. The existence of the triplex structure (centromere-microtubule-Sad1 body) suggests that the clustering of centromeres is controlled by a cytoplasmic microtubular system. Accordingly, when microtubules are destabilized, clustering is markedly reduced.


2005 ◽  
Vol 16 (6) ◽  
pp. 3052-3063 ◽  
Author(s):  
Srinivas Venkatram ◽  
Jennifer L. Jennings ◽  
Andrew Link ◽  
Kathleen L. Gould

Microtubules regulate diverse cellular processes, including chromosome segregation, nuclear positioning, and cytokinesis. In many organisms, microtubule nucleation requires γ-tubulin and associated proteins present at specific microtubule organizing centers (MTOCs). In fission yeast, interphase cytoplasmic microtubules originate from poorly characterized interphase MTOCs and spindle pole body (SPB), and during late anaphase from the equatorial MTOC (EMTOC). It has been previously shown that Mto1p (Mbo1p/Mod20p) function is important for the organization/nucleation of all cytoplasmic microtubules. Here, we show that Mto2p, a novel protein, interacts with Mto1p and is important for establishing a normal interphase cytoplasmic microtubule array. In addition, mto2Δ cells fail to establish a stable EMTOC and localize γ-tubulin complex members to this medial structure. As predicted from these functions, Mto2p localizes to microtubules, the SPB, and the EMTOC in an Mto1p-dependent manner. mto2Δ cells fail to anchor the cytokinetic actin ring in the medial region of the cell and under conditions that mildly perturb actin structures, these rings unravel in mto2Δ cells. Our results suggest that the Mto2p and the EMTOC are critical for anchoring the cytokinetic actin ring to the medial region of the cell and for proper coordination of mitosis with cytokinesis.


2004 ◽  
Vol 15 (4) ◽  
pp. 1793-1801 ◽  
Author(s):  
Fred Chang ◽  
Fabio Re ◽  
Sarah Sebastian ◽  
Shelley Sazer ◽  
Jeremy Luban

Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.


2017 ◽  
Author(s):  
Masashi Yukawa ◽  
Yusuke Yamada ◽  
Tomoaki Yamauchi ◽  
Takashi Toda

ABSTRACTKinesin motors play central roles in bipolar spindle assembly. In many eukaryotes, spindle pole separation is driven by Kinesin-5 that generates outward force. This outward force is balanced by antagonistic inward force elicited by Kinesin-14 and/or Dynein. In fission yeast, two Kinesin-14s, Pkl1 and Klp2, play an opposing role against Kinesin-5/Cut7. However, how these two Kinesin-14s coordinate individual activities remains elusive. Here we show that while deletion of eitherpkl1orklp2rescues temperature sensitivecut7mutants, onlypkl1deletion can bypass the lethality caused bycut7deletion. Pkl1 is tethered to the spindle pole body, while Klp2 is localized along the spindle microtubule. Forced targeting of Klp2 to the spindle pole body, however, compensates for Pkl1 functions, indicating that cellular localizations, rather than individual motor specificities, differentiate between the two Kinesin-14s. Interestingly, human Kinesin-14/HSET can replace either Pkl1 or Klp2. Moreover, overproducing HSET induces monopolar spindles, reminiscent of the phenotype of Cut7 inactivation. Taken together, this study has uncovered the biological mechanism of how two different Kinesin-14s exert their antagonistic roles against Kinesin-5 in a spatially distinct manner.SUMMARY STATEMENTProper force-balance generated by Kinesin-5 and Kinesin-14 is crucial for spindle bipolarity. Two fission yeast Kinesin-14s localize to different structures, thereby collaboratively producing inward forces against Kinesin-5-mediated outward force.Abbreviations usedGBPGFP-binding proteinMWP complexMsd1-Wdr8-Pkl1 complexSPBspindle pole bodytstemperature sensitiveγ-TuCthe γ-tubulin complex


2019 ◽  
Vol 83 (9) ◽  
pp. 1717-1720 ◽  
Author(s):  
Ngang Heok Tang ◽  
Chii Shyang Fong ◽  
Hirohisa Masuda ◽  
Isabelle Jourdain ◽  
Masashi Yukawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document