scholarly journals The rab Exchange Factor Sec2p Reversibly Associates with the Exocyst

2006 ◽  
Vol 17 (6) ◽  
pp. 2757-2769 ◽  
Author(s):  
Martina Medkova ◽  
Y. Ellen France ◽  
Jeff Coleman ◽  
Peter Novick

Activation of the rab GTPase, Sec4p, by its exchange factor, Sec2p, is needed for polarized transport of secretory vesicles to exocytic sites and for exocytosis. A small region in the C-terminal half of Sec2p regulates its localization. Loss of this region results in temperature-sensitive growth and the depolarized accumulation of secretory vesicles. Here, we show that Sec2p associates with the exocyst, an octameric effector of Sec4p involved in tethering secretory vesicles to the plasma membrane. Specifically, the exocyst subunit Sec15p directly interacts with Sec2p. This interaction normally occurs on secretory vesicles and serves to couple nucleotide exchange on Sec4p to the recruitment of the Sec4p effector. The mislocalization of Sec2p mutants correlates with dramatically enhanced binding to the exocyst complex. We propose that Sec2p is normally released from the exocyst after vesicle tethering so that it can recycle onto a new round of vesicles. The mislocalization of Sec2p mutants results from a failure to be released from Sec15p, blocking this recycling pathway.

2002 ◽  
Vol 157 (6) ◽  
pp. 1005-1016 ◽  
Author(s):  
Darinel Ortiz ◽  
Martina Medkova ◽  
Christiane Walch-Solimena ◽  
Peter Novick

SEC2 is an essential gene required for polarized growth of the yeast Saccharomyces cerevisiae. It encodes a protein of 759 amino acids that functions as a guanine nucleotide exchange factor for the small GTPase Sec4p, a regulator of Golgi to plasma membrane transport. Activation of Sec4p by Sec2p is needed for polarized transport of vesicles to exocytic sites. Temperature-sensitive (ts) mutations in sec2 and sec4 result in a tight block in secretion and the accumulation of secretory vesicles randomly distributed in the cell. The proper localization of Sec2p to secretory vesicles is essential for its function and is largely independent of Sec4p. Although the ts mutation sec2-78 does not affect nucleotide exchange activity, the protein is mislocalized. Here we present evidence that Ypt31/32p, members of Rab family of GTPases, regulate Sec2p function. First, YPT31/YPT32 suppress the sec2-78 mutation. Second, overexpression of Ypt31/32p restores localization of Sec2-78p. Third, Ypt32p and Sec2p interact biochemically, but Sec2p has no exchange activity on Ypt32p. We propose that Ypt32p and Sec4p act as part of a signaling cascade in which Ypt32p recruits Sec2p to secretory vesicles; once on the vesicle, Sec2p activates Sec4p, enabling the polarized transport of vesicles to the plasma membrane.


2016 ◽  
Vol 27 (4) ◽  
pp. 686-701 ◽  
Author(s):  
Danièle Stalder ◽  
Peter J. Novick

Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling.


2011 ◽  
Vol 22 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Nina Aro ◽  
Konstantin G. Chernov ◽  
Tuula Nyman ◽  
Jussi Jäntti

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.


2001 ◽  
Vol 155 (4) ◽  
pp. 581-592 ◽  
Author(s):  
Joan E. Adamo ◽  
John J. Moskow ◽  
Amy S. Gladfelter ◽  
Domenic Viterbo ◽  
Daniel J. Lew ◽  
...  

The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth.


2005 ◽  
Vol 281 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Yu Li ◽  
Sirisha Asuri ◽  
John F. Rebhun ◽  
Ariel F. Castro ◽  
Nivanka C. Paranavitana ◽  
...  

2008 ◽  
Vol 19 (7) ◽  
pp. 2718-2728 ◽  
Author(s):  
Irfan J. Lodhi ◽  
Dave Bridges ◽  
Shian-Huey Chiang ◽  
Yanling Zhang ◽  
Alan Cheng ◽  
...  

Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain–containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.


1992 ◽  
Vol 118 (5) ◽  
pp. 1041-1056 ◽  
Author(s):  
R Bowser ◽  
H Müller ◽  
B Govindan ◽  
P Novick

The SEC8 and SEC15 genes are essential for exocytosis in the yeast Saccharomyces cerevisiae and exhibit strong genetic interactions with SEC4, a gene of the ras superfamily. The SEC8 gene encodes a hydrophilic protein of 122 kD, while the temperature-sensitive sec8-9 allele encodes a protein prematurely truncated at 82 kD by an opal stop codon. The Sec8p sequence contains a 202 amino acid region that is 25% identical to the leucine rich domain of yeast adenylate cyclase that has been implicated in ras responsiveness. Fractionation, stability, and cross-linking studies indicate that Sec8p is a component of a 19.5S particle that also contains Sec15p. This particle is found both in the cytosol and peripherally associated with the plasma membrane, but it is not associated with secretory vesicles. Gel filtration studies suggest that a portion of Sec4p is in association with the Sec8p/Sec15p particle. We propose that this particle may function as a downstream effector of Sec4p, serving to direct the fusion of secretory vesicles with the plasma membrane.


2000 ◽  
Vol 275 (21) ◽  
pp. 15637-15644 ◽  
Author(s):  
Anne-Sophie Caumont ◽  
Nicolas Vitale ◽  
Marc Gensse ◽  
Marie-Christine Galas ◽  
James E. Casanova ◽  
...  

2018 ◽  
Vol 29 (12) ◽  
pp. 1476-1486 ◽  
Author(s):  
Guendalina Rossi ◽  
Kelly Watson ◽  
Wade Kennedy ◽  
Patrick Brennwald

The tomosyn/Sro7 family is thought to play an important role in cell surface trafficking both as an effector of Rab family GTPases and as a regulator of plasma-membrane SNARE function. Recent work has determined the binding site of GTP-bound Sec4 on Sro7. Here we examine the effect of mutations in Sro7 that block Sec4 binding in determining the role of this interaction in Sro7 function. Using an in vitro vesicle:vesicle tethering assay, we find that most of Sro7’s ability to tether vesicles is blocked by mutations that disrupt binding to Sec4-GTP. Similarly, genetic analysis demonstrates that the interaction with Sec4 is important for most of Sro7’s functions in vivo. The interaction of Sro7 with Sec4 appears to be particularly important when exocyst function is compromised. This provides strong evidence that Sro7 and the exocyst act as dual effector pathways downstream of Sec4. We also demonstrate that Sro7 tethering requires the presence of Sec4 on both opposing membranes and that homo-oligomerization of Sro7 occurs during vesicle tethering. This suggests a simple model for Sro7 function as a Rab effector in tethering post-Golgi vesicles to the plasma membrane in a pathway parallel to that of the exocyst complex.


Sign in / Sign up

Export Citation Format

Share Document