scholarly journals A Novel Pathway that Coordinates Mitotic Exit with Spindle Position

2007 ◽  
Vol 18 (9) ◽  
pp. 3440-3450 ◽  
Author(s):  
Scott A. Nelson ◽  
John A. Cooper

In budding yeast, the spindle position checkpoint (SPC) delays mitotic exit until the mitotic spindle moves into the neck between the mother and bud. This checkpoint works by inhibiting the mitotic exit network (MEN), a signaling cascade initiated and controlled by Tem1, a small GTPase. Tem1 is regulated by a putative guanine exchange factor, Lte1, but the function and regulation of Lte1 remains poorly understood. Here, we identify novel components of the checkpoint that operate upstream of Lte1. We present genetic evidence in agreement with existing biochemical evidence for the molecular mechanism of a pathway that links microtubule-cortex interactions with Lte1 and mitotic exit. Each component of this pathway is required for the spindle position checkpoint to delay mitotic exit until the spindle is positioned correctly.

2018 ◽  
Author(s):  
J Whalen ◽  
C Sniffen ◽  
S Gartland ◽  
M Vannini ◽  
A Seshan

ABSTRACTThe proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In budding yeast, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2. The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1. We conclude that Bfa1 functions to both inhibit and activate late mitotic events.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Michael Vannini ◽  
Victoria R. Mingione ◽  
Ashleigh Meyer ◽  
Courtney Sniffen ◽  
Jenna Whalen ◽  
...  

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.


2020 ◽  
Author(s):  
Dilara Kocakaplan ◽  
Hüseyin Karabürk ◽  
Cansu Dilege ◽  
Idil Kirdok ◽  
Şeyma Nur Erkan ◽  
...  

AbstractSaccharomyces cerevisiae, also known as the budding yeast, orients and elongates its mitotic spindle along its polarity axis in order to segregate one copy of its genomic DNA to the daughter cell. When accurate positioning of the mitotic spindle fails, a surveillance mechanism, named the Spindle Position Checkpoint (SPOC), prevents cells from exiting mitosis unless the spindle orientation is corrected. Mutants with a defective SPOC loss their genomic integrity, become multiploid and aneuploid. Thus, SPOC is a crucial checkpoint for the budding yeast. Yet, a comprehensive understanding of how the SPOC mechanism works is missing. In this study, we identified Bud14 as a novel checkpoint protein. We showed that the mitotic exit inhibitory function of Bud14 requires its association with the type 1 protein phosphatase, Glc7. Our data indicate that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results support a model in which Glc7-Bud14 works parallel to the SPOC kinase Kin4 in inhibiting mitotic exit.


2014 ◽  
Vol 25 (14) ◽  
pp. 2143-2151 ◽  
Author(s):  
Ayse Koca Caydasi ◽  
Yagmur Micoogullari ◽  
Bahtiyar Kurtulmus ◽  
Saravanan Palani ◽  
Gislene Pereira

In addition to their well-known role in microtubule organization, centrosomes function as signaling platforms and regulate cell cycle events. An important example of such a function is the spindle position checkpoint (SPOC) of budding yeast. SPOC is a surveillance mechanism that ensures alignment of the mitotic spindle along the cell polarity axis. Upon spindle misalignment, phosphorylation of the SPOC component Bfa1 by Kin4 kinase engages the SPOC by changing the centrosome localization of Bfa1 from asymmetric (one centrosome) to symmetric (both centrosomes). Here we show that, unexpectedly, Kin4 alone is unable to break Bfa1 asymmetry at yeast centrosomes. Instead, phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1–centrosome association and promotes symmetric Bfa1 localization. Consistently, BMH1-null cells are SPOC deficient. Our work thus identifies Bmh1 as a new SPOC component and refines the molecular mechanism that breaks Bfa1 centrosome asymmetry upon SPOC activation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jill Elaine Falk ◽  
Dai Tsuchiya ◽  
Jolien Verdaasdonk ◽  
Soni Lacefield ◽  
Kerry Bloom ◽  
...  

In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.


2001 ◽  
Vol 11 (10) ◽  
pp. 784-788 ◽  
Author(s):  
Sarah E. Lee ◽  
Lisa M. Frenz ◽  
Nicholas J. Wells ◽  
Anthony L. Johnson ◽  
Leland H. Johnston

2004 ◽  
Vol 15 (4) ◽  
pp. 1519-1532 ◽  
Author(s):  
Jeffrey N. Molk ◽  
Scott C. Schuyler ◽  
Jenny Y. Liu ◽  
James G. Evans ◽  
E. D. Salmon ◽  
...  

In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade.


2021 ◽  
Author(s):  
Shen Jiangyan ◽  
Kaoru Takegawa ◽  
Gislene Pereira ◽  
Hiromi Maekawa

The Mitotic exit network (MEN) is a conserved signalling pathway essential for termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Amongst O. polymorpha protein kinases that have some similarity to ScCdc15, only two had no other obvious homologues in S. cerevisiae and these were named OpHCD1 and OpHCD2 for homologue candidate of ScCdc15. A search in other yeast species revealed that OpHcd2 has an armadillo type fold in the C-terminal region as found in SpCdc7 kinases of the fission yeast Schizosaccharomyces pombe, which are homologues of ScCdc15; while OpHcd1 is homologous to SpSid1 kinase, a component of the Septation Initiation Network (SIN) of S. pombe not present in the MEN. Since the deletion of either OpHCD1 or OpHCD2 resulted in lethality under standard growth conditions, conditional mutants were constructed by introducing an ATP analog sensitive mutation. For OpHCD2, we constructed and used new genetic tools for O. polymorpha that combined the Tet promoter and the improved auxin-degron systems. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. These results suggest a SIN-like signalling pathway regulates termination of mitosis in O. polymorpha and that the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.


2008 ◽  
Vol 19 (10) ◽  
pp. 4328-4340 ◽  
Author(s):  
Junwon Kim ◽  
Selma Sun Jang ◽  
Kiwon Song

In budding yeast, Tem1 is a key regulator of mitotic exit. Bfa1/Bub2 stimulates Tem1 GTPase activity as a GTPase-activating protein (GAP). Lte1 possesses a guanine-nucleotide exchange factor (GEF) domain likely for Tem1. However, recent observations showed that cells may control mitotic exit without either Lte1 or Bfa1/Bub2 GAP activity, obscuring how Tem1 is regulated. Here, we assayed BFA1 mutants with varying GAP activities for Tem1, showing for the first time that Bfa1/Bub2 GAP activity inhibits Tem1 in vivo. A decrease in GAP activity allowed cells to bypass mitotic exit defects. Interestingly, different levels of GAP activity were required to prevent mitotic exit depending on the type of perturbation. Although essential, more Bfa1/Bub2 GAP activity was needed for spindle damage than for DNA damage to fully activate the checkpoint. Conversely, Bfa1/Bub2 GAP activity was insufficient to delay mitotic exit in cells with misoriented spindles. Instead, decreased interaction of Bfa1 with Kin4 was observed in BFA1 mutant cells with a defective spindle position checkpoint. These findings demonstrate that there is a GAP-independent surveillance mechanism of Bfa1/Bub2, which, together with the GTP/GDP switch of Tem1, may be required for the genomic stability of cells with misaligned spindles.


Sign in / Sign up

Export Citation Format

Share Document