scholarly journals Nup53 Is Required for Nuclear Envelope and Nuclear Pore Complex Assembly

2008 ◽  
Vol 19 (4) ◽  
pp. 1753-1762 ◽  
Author(s):  
Lisa A. Hawryluk-Gara ◽  
Melpomeni Platani ◽  
Rachel Santarella ◽  
Richard W. Wozniak ◽  
Iain W. Mattaj

Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53–Nup155 complex plays a critical role in the processes of NPC and NE assembly.

1997 ◽  
Vol 110 (13) ◽  
pp. 1489-1502 ◽  
Author(s):  
C. Wiese ◽  
M.W. Goldberg ◽  
T.D. Allen ◽  
K.L. Wilson

We analyzed the pathway of nuclear envelope assembly in Xenopus egg extracts using field emission in-lens scanning electron microscopy. The binding, fusion, and flattening of vesicles onto the chromatin surface were visualized in detail. The first nuclear pore complexes assembled in flattened patches of nuclear envelope, before the chromatin was fully enclosed by membranes. Confirming previous transmission electron microscope observations, two morphologically distinct types of vesicles contributed to the nuclear membranes: ribosome-carrying (‘rough’) vesicles, many of which bound directly to chromatin, and ‘smooth’ vesicles, which appeared to associate primarily with other nuclear vesicles or membrane patches. The presence of ribosomes, an outer nuclear membrane marker, on many chromatin-binding vesicles suggested that chromatin-attachment proteins integral to the inner membrane were present on vesicles that also carried markers of the outer membrane and endoplasmic reticulum. Chromatin-associated vesicles also carried pore membrane proteins, since pore complexes formed when these vesicles were incubated with cytosol. A change in nuclear envelope morphology termed ‘envelope smoothing’ occurred 5–15 minutes after enclosure. Nuclear envelopes that were assembled in extracts depleted of wheat-germ-agglutinin-binding nucleoporins, and therefore unable to form functional pore complexes, remained wrinkled, suggesting that ‘smoothing’ required active nuclear transport. Lamins accumulated with time when nuclei were enclosed and had functional pore complexes, whereas lamins were not detected on nuclei that lacked functional pore complexes. Very low levels of lamins were detected on nuclear intermediates whose surfaces were substantially covered with patches of pore-complex-containing envelope, suggesting that pore complexes might be functional before enclosure.


1997 ◽  
Vol 110 (4) ◽  
pp. 409-420 ◽  
Author(s):  
M.W. Goldberg ◽  
C. Wiese ◽  
T.D. Allen ◽  
K.L. Wilson

We used field emission in-lens scanning electron microscopy to examine newly-assembled, growing nuclear envelopes in Xenopus egg extracts. Scattered among nuclear pore complexes were rare ‘dimples’ (outer membrane depressions, 5–35 nm diameter), more abundant holes (pores) with a variety of edge geometries (35–45 nm diameter; 3.3% of structures), pores containing one to eight triangular ‘star-ring’ subunits (2.1% of total), and more complicated structures. Neither mature complexes, nor these novel structures, formed when wheat germ agglutinin (which binds O-glycosylated nucleoporins) was added at high concentrations (>500 microg/ml) directly to the assembly reaction; low concentrations (10 microg/ml) had no effect. However at intermediate concentrations (50–100 microg/ml), wheat germ agglutinin caused a dramatic, sugar-reversible accumulation of ‘empty’ pores, and other structures; this effect correlated with the lectin-induced precipitation of a variable proportion of each major Xenopus wheat-germ-agglutinin-binding nucleoporin. Another inhibitor, dibromo-BAPTA (5,5′-dibromo-1,2-bis[o-aminophenoxylethane-N,N,N′,N′-tetraacetic acid), had different effects depending on its time of addition to the assembly reaction. When 1 mM dibromo-BAPTA was added at time zero, no pore-related structures formed. However, when dibromo-BAPTA was added to growing nuclei 40–45 minutes after initiating assembly, star-rings and other structures accumulated, suggesting that dibromo-BAPTA can inhibit multiple stages in pore complex assembly. We propose that assembly begins with the formation and stabilization of a hole (pore) through the nuclear envelope, and that dimples, pores, star-rings, and thin rings are structural intermediates in nuclear pore complex assembly.


2003 ◽  
Vol 14 (12) ◽  
pp. 5104-5115 ◽  
Author(s):  
Vincent Galy ◽  
Iain W. Mattaj ◽  
Peter Askjaer

Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of ∼70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.


2021 ◽  
Author(s):  
Guillaume Holzer ◽  
Paola De Magistris ◽  
Cathrin Gramminger ◽  
Ruchika Sachdev ◽  
Adriana Magalska ◽  
...  

During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. We show here that Nup50 plays a crucial role in NPC assembly that is independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of the protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α, β, the GTPase Ran or chromatin is crucial for its function in the assembly process. Instead, we discovered that an N-terminal fragment of Nup50 can stimulate the Ran guanine exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in mitotic NPC reformation. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild type protein in in vitro NPC assembly assays.


2012 ◽  
Vol 109 (38) ◽  
pp. 15241-15246 ◽  
Author(s):  
Silvija Bilokapic ◽  
Thomas U. Schwartz

Nucleocytoplasmic transport is mediated by nuclear pore complexes (NPCs), enormous assemblies composed of multiple copies of ∼30 different proteins called nucleoporins. To unravel the basic scaffold underlying the NPC, we have characterized the species-specific scaffold nucleoporin Nup37 and ELY5/ELYS. Both proteins integrate directly via Nup120/160 into the universally conserved heptameric Y-complex, the critical unit for the assembly and functionality of the NPC. We present the crystal structure of Schizosaccharomyces pombe Nup37 in complex with Nup120, a 174-kDa subassembly that forms one of the two short arms of the Y-complex. Nup37 binds near the bend of the L-shaped Nup120 protein, potentially stabilizing the relative orientation of its two domains. By means of reconstitution assays, we pinpoint residues crucial for this interaction. In vivo and in vitro results show that ELY5 binds near an interface of the Nup120–Nup37 complex. Complementary biochemical and cell biological data refine and consolidate the interactions of Nup120 within the current Y-model. Finally, we propose an orientation of the Y-complex relative to the pore membrane, consistent with the lattice model.


2001 ◽  
Vol 154 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Susan K. Lyman ◽  
Larry Gerace

In vivo studies on the dynamics of the nuclear pore complex (NPC) in yeast suggested that NPCs are highly mobile in the nuclear envelope. However, new evidence indicates that in mammalian cells NPCs are stably attached to a flexible lamina framework, but a peripheral component can exchange rapidly with an intranuclear pool.


2008 ◽  
Vol 19 (9) ◽  
pp. 3652-3666 ◽  
Author(s):  
Katerina R. Katsani ◽  
Roger E. Karess ◽  
Nathalie Dostatni ◽  
Valérie Doye

Nuclear pore complexes (NPCs) are multisubunit protein entities embedded into the nuclear envelope (NE). Here, we examine the in vivo dynamics of the essential Drosophila nucleoporin Nup107 and several other NE-associated proteins during NE and NPCs disassembly and reassembly that take place within each mitosis. During both the rapid mitosis of syncytial embryos and the more conventional mitosis of larval neuroblasts, Nup107 is gradually released from the NE, but it remains partially confined to the nuclear (spindle) region up to late prometaphase, in contrast to nucleoporins detected by wheat germ agglutinin and lamins. We provide evidence that in all Drosophila cells, a structure derived from the NE persists throughout metaphase and early anaphase. Finally, we examined the dynamics of the spindle checkpoint proteins Mad2 and Mad1. During mitotic exit, Mad2 and Mad1 are actively imported back from the cytoplasm into the nucleus after the NE and NPCs have reformed, but they reassociate with the NE only later in G1, concomitantly with the recruitment of the basket nucleoporin Mtor (the Drosophila orthologue of vertebrate Tpr). Surprisingly, Drosophila Nup107 shows no evidence of localization to kinetochores, despite the demonstrated importance of this association in mammalian cells.


2001 ◽  
Vol 155 (3) ◽  
pp. 339-354 ◽  
Author(s):  
Sanjay Vasu ◽  
Sundeep Shah ◽  
Arturo Orjalo ◽  
Minkyu Park ◽  
Wolfgang H. Fischer ◽  
...  

RNA undergoing nuclear export first encounters the basket of the nuclear pore. Two basket proteins, Nup98 and Nup153, are essential for mRNA export, but their molecular partners within the pore are largely unknown. Because the mechanism of RNA export will be in question as long as significant vertebrate pore proteins remain undiscovered, we set out to find their partners. Fragments of Nup98 and Nup153 were used for pulldown experiments from Xenopus egg extracts, which contain abundant disassembled nuclear pores. Strikingly, Nup98 and Nup153 each bound the same four large proteins. Purification and sequence analysis revealed that two are the known vertebrate nucleoporins, Nup96 and Nup107, whereas two mapped to ORFs of unknown function. The genes encoding the novel proteins were cloned, and antibodies were produced. Immunofluorescence reveals them to be new nucleoporins, designated Nup160 and Nup133, which are accessible on the basket side of the pore. Nucleoporins Nup160, Nup133, Nup107, and Nup96 exist as a complex in Xenopus egg extracts and in assembled pores, now termed the Nup160 complex. Sec13 is prominent in Nup98 and Nup153 pulldowns, and we find it to be a member of the Nup160 complex. We have mapped the sites that are required for binding the Nup160 subcomplex, and have found that in Nup98, the binding site is used to tether Nup98 to the nucleus; in Nup153, the binding site targets Nup153 to the nuclear pore. With transfection and in vivo transport assays, we find that specific Nup160 and Nup133 fragments block poly[A]+ RNA export, but not protein import or export. These results demonstrate that two novel vertebrate nucleoporins, Nup160 and Nup133, not only interact with Nup98 and Nup153, but themselves play a role in mRNA export.


2006 ◽  
Vol 173 (5) ◽  
pp. 685-694 ◽  
Author(s):  
Lori L. O'Brien ◽  
Christiane Wiese

Cell division in many metazoa is accompanied by the disassembly of the nuclear envelope and the assembly of the mitotic spindle. These dramatic structural rearrangements are reversed after mitosis, when the mitotic spindle is dismantled and the nuclear envelope reassembles. The targeting protein for XKlp2 (TPX2) plays important roles in mitotic spindle assembly. We report that TPX2 depletion from nuclear assembly extracts prepared from Xenopus laevis eggs results in the formation of nuclei that are only about one fifth the size of control nuclei. TPX2-depleted nuclei assemble nuclear envelopes, nuclear pore complexes, and a lamina, and they perform nuclear-specific functions, including DNA replication. We show that TPX2 interacts with lamina-associated polypeptide 2 (LAP2), a protein known to be required for nuclear assembly in interphase extracts and in vitro. LAP2 localization is disrupted in TPX2-depleted nuclei, suggesting that the interaction between TPX2 and LAP2 is required for postmitotic nuclear reformation.


1999 ◽  
Vol 112 (11) ◽  
pp. 1743-1753 ◽  
Author(s):  
B. Buendia ◽  
A. Santa-Maria ◽  
J.C. Courvalin

We have studied the fate of the nuclear envelope (NE) in different human cells committed to apoptosis by different chemical agents. Using a battery of antibodies against marker proteins of the three domains of the nuclear envelope, namely lamin B (LB) for the lamina, transmembrane proteins LBR and LAP2 for the inner nuclear membrane, and nucleoporins p62, Nup153 and gp210 for the nuclear pore complexes (NPCs), we observed a selective and conserved cleavage of LB, LAP2 and Nup153. In lymphoid cells, the rate of cleavage of these markers was independent of the apoptosis inducing agent, actinomycin D or etoposide, and more rapid than in attached epithelial cells. While lamin B is cleaved by caspase 6, the protease responsible for the cleavage of LAP2 and Nup153 was probably caspase 3, since (1) cleavage of both proteins was specifically prevented by in vivo addition of caspase 3 inhibitor Ac-DEVD-CHO and (2) consensus sites for these caspases are present in both proteins. As LB, LAP2 and Nup153 are exposed at the inner face of the nuclear envelope and all interact with chromatin, we suggest that their cleavage allows both the detachment of NE from chromatin and the clustering of NPCs in the plane of the membrane, two conserved morphological features of apoptosis observed in this study.


Sign in / Sign up

Export Citation Format

Share Document