scholarly journals Efg1-mediated Recruitment of NuA4 to Promoters Is Required for Hypha-specific Swi/Snf Binding and Activation inCandida albicans

2008 ◽  
Vol 19 (10) ◽  
pp. 4260-4272 ◽  
Author(s):  
Yang Lu ◽  
Chang Su ◽  
Xuming Mao ◽  
Prashna Pala Raniga ◽  
Haoping Liu ◽  
...  

Efg1 is essential for hyphal development and virulence in the human pathogenic fungus Candida albicans. How Efg1 regulates gene expression is unknown. Here, we show that Efg1 interacts with components of the nucleosome acetyltransferase of H4 (NuA4) histone acetyltransferase (HAT) complex in both yeast and hyphal cells. Deleting YNG2, a subunit of the NuA4 HAT module, results in a significant decrease in the acetylation level of nucleosomal H4 and a profound defect in hyphal development, as well as a defect in the expression of hypha-specific genes. Using chromatin immunoprecipitation, Efg1 and the NuA4 complex are found at the UAS regions of hypha-specific genes in both yeast and hyphal cells, and Efg1 is required for the recruitment of NuA4. Nucleosomal H4 acetylation at the promoters peaks during initial hyphal induction in an Efg1-dependent manner. We also find that Efg1 bound to the promoters of hypha-specific genes is critical for recruitment of the Swi/Snf chromatin remodeling complex during hyphal induction. Our data show that the recruitment of the NuA4 complex by Efg1 to the promoters of hypha-specific genes is required for nucleosomal H4 acetylation at the promoters during hyphal induction and for subsequent binding of Swi/Snf and transcriptional activation.

2019 ◽  
Vol 47 (15) ◽  
pp. 7914-7928 ◽  
Author(s):  
Sarallah Rezazadeh ◽  
David Yang ◽  
Gregory Tombline ◽  
Matthew Simon ◽  
Sean P Regan ◽  
...  

Abstract SIRT6 is critical for activating transcription of Nuclear factor (erythroid-derived 2)-like 2 (NRF2) responsive genes during oxidative stress. However, while the mechanism of SIRT6-mediated silencing is well understood, the mechanism of SIRT6-mediated transcriptional activation is unknown. Here, we employed SIRT6 separation of function mutants to reveal that SIRT6 mono-ADP-ribosylation activity is required for transcriptional activation. We demonstrate that SIRT6 mono-ADP-ribosylation of BAF170, a subunit of BAF chromatin remodeling complex, is critical for activation of a subset of NRF2 responsive genes upon oxidative stress. We show that SIRT6 recruits BAF170 to enhancer region of the Heme oxygenase-1 locus and promotes recruitment of RNA polymerase II. Furthermore, SIRT6 mediates the formation of the active chromatin 10-kb loop at the HO-1 locus, which is absent in SIRT6 deficient tissue. These results provide a novel mechanism for SIRT6-mediated transcriptional activation, where SIRT6 mono-ADP-ribosylates and recruits chromatin remodeling proteins to mediate the formation of active chromatin loop.


FEBS Letters ◽  
2006 ◽  
Vol 580 (11) ◽  
pp. 2615-2622 ◽  
Author(s):  
Xuming Mao ◽  
Fang Cao ◽  
Xinyi Nie ◽  
Haoping Liu ◽  
Jiangye Chen

2007 ◽  
Vol 28 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Sayura Aoyagi ◽  
Trevor K. Archer

ABSTRACT Sirtuins, homologs of the yeast SIR2 family, are protein deacetylases that require nicotinamide adenosine dinucleotide as cofactor. To determine whether the sirtuin family of deacetylases is involved in progesterone receptor (PR)-mediated transcription, the effect of sirtuin inhibitor, nicotinamide (NAM), was monitored in T47D breast cancer cells. NAM suppressed hormone-dependent activation of PR-regulated genes in a dose-dependent manner. Surprisingly, NAM-mediated inhibition of PR-mediated transcription occurs independently of SIRT1 and PARP1. Chromatin immunoprecipitation experiments did not show that PR binding nor that of the coactivators CBP and SRC3 was compromised. Consistent with the recruitment of the BRG1 chromatin remodeling complex, promoter chromatin remodeling still occurs despite NAM inhibition of PR transactivation. Rather, we show that this inhibition of transcription is due to dramatic loss of recruitment of the basal transcriptional machinery to the promoter. These results show that NAM uncouples promoter chromatin remodeling from transcription preinitiation complex assembly and suggest the existence of vital NAM-regulated steps required for promoter chromatin remodeling and basal transcription complex communication.


2004 ◽  
Vol 24 (18) ◽  
pp. 8227-8235 ◽  
Author(s):  
Vardit Dror ◽  
Fred Winston

ABSTRACT The Swi/Snf chromatin remodeling complex has been previously demonstrated to be required for transcriptional activation and repression of a subset of genes in Saccharomyces cerevisiae. In this work we demonstrate that Swi/Snf is also required for repression of RNA polymerase II-dependent transcription in the ribosomal DNA (rDNA) locus (rDNA silencing). This repression appears to be independent of both Sir2 and Set1, two factors known to be required for rDNA silencing. In contrast to many other rDNA silencing mutants that have elevated levels of rDNA recombination, snf2Δ mutants have a significantly decreased level of rDNA recombination. Additional studies have demonstrated that Swi/Snf is also required for silencing of genes near telomeres while having no detectable effect on silencing of HML or HMR.


2005 ◽  
Vol 83 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Wei Xu

The biological effects of hormones, ranging from organogenesis, metabolism, and proliferation, are transduced through nuclear receptors (NRs). Over the last decade, NRs have been used as a model to study transcriptional control. The conformation of activated NRs is favorable for the recruitment of coactivators, which promote transcriptional activation by directly communicating with chromatin. This review will focus on the function of different classes of coactivators and associated complexes, and on progress in our understanding of gene activation by NRs through chromatin remodeling.Key words: nuclear hormone receptor, p160 family of coactivators, histone modification, chromatin remodeling complex.


2006 ◽  
Vol 81 (5) ◽  
pp. 2213-2220 ◽  
Author(s):  
R. Ajay Kumar ◽  
Samisubbu R. Naidu ◽  
Xiaoyu Wang ◽  
Anthony N. Imbalzano ◽  
Elliot J. Androphy

ABSTRACT Papillomavirus E2 is a sequence-specific DNA binding protein that regulates transcription and replication of the viral genome. The transcriptional activities of E2 are typically evaluated by transient transfection of nonreplicating E2-dependent reporters. We sought to address whether E2 activates transcription in an episomal context and its potential interaction with the chromatin remodeling proteins. Using an Epstein-Barr virus-based episomal reporter, we demonstrate that E2 stimulates transcription from an E2-dependent promoter in a chromatin context. This activation is enhanced by the presence of proteins associated with SWI/SNF complexes, which are ATP-dependent chromatin remodeling enzymes. We show that exogenous expression of the Brm ATPase enhances E2 activity in SWI/SNF-deficient cell lines and that the amino-terminal transactivation domain of E2 mediates association with the Brm complex in vivo. Using chromatin immunoprecipitation assays, we demonstrate that Brm enhances promoter occupancy by E2 in an episomal context. Our results demonstrate that E2 activates transcription from an episomal reporter system and reveal a novel property of E2 in collaborating with the Brm chromatin remodeling complex in enhancing transcriptional activation.


Genetics ◽  
2010 ◽  
Vol 186 (1) ◽  
pp. 167-181 ◽  
Author(s):  
Rosaria Rendina ◽  
Agostino Strangi ◽  
Bice Avallone ◽  
Ennio Giordano

2008 ◽  
Vol 28 (23) ◽  
pp. 6967-6972 ◽  
Author(s):  
Jennifer K. Choi ◽  
Daniel E. Grimes ◽  
Keegan M. Rowe ◽  
LeAnn J. Howe

ABSTRACT Rsc4p, a subunit of the RSC chromatin-remodeling complex, is acetylated at lysine 25 by Gcn5p, a well-characterized histone acetyltransferase (HAT). Mutation of lysine 25 does not result in a significant growth defect, and therefore whether this modification is important for the function of the essential RSC complex was unknown. In a search to uncover the molecular basis for the lethality resulting from loss of multiple histone H3-specific HATs, we determined that loss of Rsc4p acetylation is lethal in strains lacking histone H3 acetylation. Phenotype comparison of mutants with arginine and glutamine substitutions of acetylatable lysines within the histone H3 tail suggests that it is a failure to neutralize the charge of the H3 tail that is lethal in strains lacking Rsc4p acetylation. We also demonstrate that Rsc4p acetylation does not require any of the known Gcn5p-dependent HAT complexes and thus represents a truly novel function for Gcn5p. These results demonstrate for the first time the vital and yet redundant functions of histone H3 and Rsc4p acetylation in maintaining cell viability.


Sign in / Sign up

Export Citation Format

Share Document