hyphal development
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 13)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanzhen Lv ◽  
Lan Yan ◽  
Yuanying Jiang

The vacuole of Candida albicans plays a significant role in many processes including homeostasis control, cellular trafficking, dimorphic switching, and stress tolerance. Thus, understanding the factors affecting vacuole function is important for the identification of new drug targets needed in response to the world’s increasing levels of invasive infections and the growing issue of fungal drug resistance. Past studies have shown that vacuolar proton-translocating ATPases (V-ATPases) play a central role in pH homeostasis and filamentation. Vacuolar protein sorting components (VPS) regulate V-ATPases assembly and at the same time affect hyphal development. As well, vacuolar calcium exchange systems like Yvc1 and Pmc1 maintain cytosolic calcium levels while being affected by V-ATPases function. All these proteins play a role in the virulence and pathogenesis of C. albicans. This review highlights the relationships among V-ATPases, VPS, and vacuolar calcium exchange proteins while summarizing their importance in C. albicans infections.


Genetics ◽  
2021 ◽  
Author(s):  
Raha Parvizi Omran ◽  
Bernardo Ramírez-Zavala ◽  
Walters Aji Tebung ◽  
Shuangyan Yao ◽  
Jinrong Feng ◽  
...  

Abstract Zinc cluster transcription factors are essential fungal regulators of gene expression. In the pathogen Candida albicans, the gene orf19.1604 encodes a zinc cluster transcription factor regulating filament development. Hyperactivation of orf19.1604, which we have named RHA1 for Regulator of Hyphal Activity, generates wrinkled colony morphology under non-hyphal growth conditions, triggers filament formation, invasiveness, and enhanced biofilm formation and causes reduced virulence in the mouse model of systemic infection. The strain expressing activated Rha1 shows up-regulation of genes required for filamentation and cell-wall-adhesion-related proteins. Increased expression is also seen for the hyphal-inducing transcription factors Brg1 and Ume6, while the hyphal repressor Nrg1 is downregulated. Inactivation of RHA1 reduces filamentation under a variety of filament-inducing conditions. In contrast to the partial effect of either single mutant, the double rha1 ume6 mutant strain is highly defective in both serum- and Spider-medium-stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization even in brg1 ume6 double mutants. Thus, in response to external signals, Rha1 functions with other morphogenesis regulators including Brg1 and Ume6, to mediate filamentation.


Author(s):  
Raha Parvizi Omran ◽  
Chris Law ◽  
Vanessa Dumeaux ◽  
Joachim Morschhäuser ◽  
Malcolm Whiteway

AbstractZinc cluster transcription factors are essential fungal specific regulators of gene expression. In the dimorphic pathogen Candida albicans, they control processes ranging from metabolism and stress adaptation to mating, virulence, and antifungal resistance. Here, we have identified the gene CaORF19.1604 as encoding a zinc cluster transcription factor that acts as a regulator of filament development. Hyperactivation of CaORF19.1604, which we have named RHA1 for Regulator of Hyphal Activity, leads to a wrinkled colony morphology under non-hyphal growth conditions, to pseudohyphal growth and filament formation, to invasiveness and enhanced biofilm formation.  Cells with activated Rha1 are sensitive to cell wall modifying agents such as Congo red and the echinocandin drug caspofungin but show normal sensitivity to fluconazole. RNA-sequencing-based transcriptional profiling of the activated Rha1 strain reveals the up-regulation of genes for core filamentation and cell-wall-adhesion-related proteins such as Als1, Als3, Ece1, and Hwp1. Upregulation is also seen for the genes for the hyphal-inducing transcription factors Brg1 and Ume6 and genes encoding several enzymes involved in arginine metabolism, while downregulation is seen for the hyphal repressor Nrg1. The deletion of BRG1 blocks the filamentation caused by activated Rha1, while null mutants of UME6 result in a partial block. Deletion of RHA1 can partially reduce healthy hyphal development triggered by environmental conditions such as Spider medium or serum at 37°C.In contrast to the limited effect of either single mutant, the double rha1 ume6 deletion strain is totally defective in both serum and Spider medium stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization in even brg1 ume6 double mutants. Our results thus suggest that in response to external signals, Rha1 functions to facilitate the switch from an Nrg1 controlled yeast state to a Brg1/Ume6 regulated hyphal state.Author SummaryCandida albicans is the predominant human fungal pathogen, generating a mortality rate of 40% in systemically infected patients. The ability of Candida albicans to change its morphology is a determinant of its tissue penetration and invasion in response to variant host-related stimuli. The regulatory mechanism for filamentation includes a complex network of transcription factors that play roles in regulating hyphae associated genes. We identify here a new regulator of filamentation from the zinc cluster transcription factor family. We present evidence suggesting that this transcription factor assists the Nrg1/Brg1 switch regulating hyphal development.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ohimai Unoje ◽  
Mengli Yang ◽  
Yang Lu ◽  
Chang Su ◽  
Haoping Liu

ABSTRACT Candida albicans is an important human pathogen responsible for causing both superficial and systemic infections. Its ability to switch from the yeast form to the hyphal growth form is required for its pathogenicity. Acidic pH inhibits hyphal initiation, but the nature of the mechanism for this inhibition is not completely clear. We show that acidic pH represses hyphal initiation independently of the temperature- and farnesol-mediated Nrg1 downregulation. Using a collection of transcription factor deletion mutants, we observed that the sfl1 mutant induced hyphae in acidic pH but not in farnesol at 37°C. Furthermore, transcription of hyphal regulators BRG1 and UME6 was not induced in wild-type (WT) cells but was induced in the sfl1 mutant during hyphal induction in acidic pH. Using the same screening conditions with the collection of kinase mutants, we found that deletions of the core stress response mitogen-activated protein (MAP) kinase HOG1 and its kinase PBS2, the cell wall stress MAP kinase MKC1, and the calcium/calmodulin-dependent kinase CMK1 allowed hyphal initiation in acidic pH. Furthermore, Hog1 phosphorylation induced by high osmotic stress also retarded hyphal initiation, and the effect was abolished in the sfl1 and three kinase mutants but was enhanced in the phosphatase mutant ptp2 ptp3. We also found functional associations among Cmk1, Hog1, and Sfl1 for cation stress. Our study results suggest that robust hyphal initiation requires downregulation of both Nrg1 and Sfl1 transcriptional repressors as well as timely BRG1 expression. Acidic pH and cationic stress retard hyphal initiation via the stress-responsive kinases and Sfl1. IMPORTANCE Candida albicans is a commensal as well as a pathogen of humans. C. albicans is able to mount a cellular response to a diverse range of external stimuli in the host and switch reversibly between the yeast and hyphal growth forms. Hyphal development is a key virulence determinant. Here, we studied how C. albicans senses different environmental signals to control its growth forms. Our study results suggest that robust hyphal development requires downregulation of two transcriptional repressors, Nrg1 and Sfl1. Acidic pH or cationic stress inhibits hyphal formation via stress-responsive kinases and Sfl1.


2019 ◽  
Vol 184 (5) ◽  
pp. 573-583 ◽  
Author(s):  
Qilin Yu ◽  
Tianyu Ma ◽  
Congcong Ma ◽  
Biao Zhang ◽  
Mingchun Li

2019 ◽  
Vol 20 (5) ◽  
pp. 731-747 ◽  
Author(s):  
Yue Liu ◽  
Jiane‐Kang Liu ◽  
Gui‐Hua Li ◽  
Ming‐Zhe Zhang ◽  
Ying‐Ying Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document