scholarly journals Kinesin-8 from Fission Yeast: A Heterodimeric, Plus-End–directed Motor that Can Couple Microtubule Depolymerization to Cargo Movement

2009 ◽  
Vol 20 (3) ◽  
pp. 963-972 ◽  
Author(s):  
Paula M. Grissom ◽  
Thomas Fiedler ◽  
Ekaterina L. Grishchuk ◽  
Daniela Nicastro ◽  
Robert R. West ◽  
...  

Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5+ and klp6+ genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end–directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.

2006 ◽  
Vol 173 (6) ◽  
pp. 879-891 ◽  
Author(s):  
Jim Wong ◽  
Guowei Fang

Through a functional genomic screen for mitotic regulators, we identified hepatoma up-regulated protein (HURP) as a protein that is required for chromosome congression and alignment. In HURP-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in the activation of the spindle checkpoint. Although these defects transiently delayed mitotic progression, HeLa cells initiated anaphase without resolution of these deficiencies. This bypass of the checkpoint arrest provides a tumor-specific mechanism for chromosome missegregation and genomic instability. Mechanistically, HURP colocalized with the mitotic spindle in a concentration gradient increasing toward the chromosomes. HURP binds directly to microtubules in vitro and enhances their polymerization. In vivo, HURP stabilizes mitotic microtubules, promotes microtubule polymerization and bipolar spindle formation, and decreases the turnover rate of the mitotic spindle. Thus, HURP controls spindle stability and dynamics to achieve efficient kinetochore capture at prometaphase, timely chromosome congression to the metaphase plate, and proper interkinetochore tension for anaphase initiation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lara Katharina Krüger ◽  
Matthieu Gélin ◽  
Liang Ji ◽  
Carlos Kikuti ◽  
Anne Houdusse ◽  
...  

Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in S. pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
P Karamtzioti ◽  
G Tiscornia ◽  
D Garcia ◽  
A Rodriguez ◽  
I Vernos ◽  
...  

Abstract Study question How does the meiotic spindle tubulin PTMs of MII oocytes matured in vitro compare to that of MII oocytes matured in vivo? Summary answer MII cultured in vitro present detyrosinated tubulin in the spindle microtubules, while MII oocytes matured in vivo do not. What is known already A functional spindle is required for chromosomal segregation during meiosis, but the role of tubulin post-translational modifications (PTMs) in spindle meiotic dynamics remains poorly characterized. In contrast with GVs matured in vitro within the cumulus oophorous, in vitro maturation of denuded GVs to the MII stage (GV-MII) is associated with spindle abnormalities, chromosome misalignment and compromised developmental potential. Although aneuploidy rates in GV-MII are not higher than in vivo matured MII, disorganized chromosomes may contribute to compromised developmental potential. However, to date, spindle PTMs morphology of GV-MII has not been compared to that of in vivo cultured MII oocytes. Study design, size, duration GV (n = 125), and MII oocytes (n = 24) were retrieved from hormonally stimulated women, aged 20 to 35 years old. GVs were matured to the MII stage in vitro in G-2 PLUS medium for 30h; the maturation rate was 68,2%; the 46 GV-MII oocytes obtained were vitrified, stored, and warmed before fixing and subjecting to immunofluorescent analysis. In vivo matured MII oocytes donated to research were used as controls. Participants/materials, setting, methods Women were stimulated using a GnRH antagonist protocol, with GnRH agonist trigger. Trigger criterion was ≥2 follicles ≥18mm; oocytes were harvested 36h later. Spindle microtubules were incubated with antibodies against alpha tubulin and tubulin PTMs (acetylation, tyrosination, polyglutamylation, Δ2-tubulin, and detyrosination); chromosomes were stained with Hoechst 33342 and samples subjected to confocal immunofluorescence microscopy (ZEISS LSM780), with ImageJ software analysis. Differences in spindle morphometric parameters were assessed by non-parametric Kruskal–Wallis and Fisher’s exact tests. Main results and the role of chance Qualitatively, Δ2-tubulin, tyrosination and polyglutamylation were similar for both groups. Acetylation was also present in both groups, albeit in different patterns: while in vivo matured MII oocytes showed acetylation at the poles, GV-MII showed a symmetrical distribution of signal intensity, but discontinuous signal on individual microtubule tracts, suggesting apparent islands of acetylation. In contrast, detyrosination was detected in in vivo matured MII oocytes but was absent from GV-MII. Regarding spindle pole morphology, of the four possible phenotypes described in the literature (double flattened and double focused; flattened-focused, focused-flattened, with the first word characterizing the cortex side of the spindle), we observed double flat shaped spindle poles in 86% of GV-MII oocytes (25/29) as opposed to 40.5% (15/37) for the in vivo matured MII oocytes (p = 0.0004, Fisher’s exact test). Further morphometric analysis of the spindle size (maximum projection, major and minor axis length) and the metaphase plate position (proximal to distal ratio, angle) revealed decreased spindle size in GV-MII oocytes (p = 0.019, non parametric Kruskal- Wallis test). Limitations, reasons for caution Oocytes retrieved from hyperstimulation cycles could be intrinsically impaired since they failed to mature in vivo. Our conclusions should not be extrapolated to IVM in non-stimulated cycles, as in this model, the cumulus oophorus is a major factor in oocyte maturation and correlation with spindle dynamics has been inferred. Wider implications of the findings The metaphase II spindle stability compared to the mitotic or metaphase I meiotic one justifies the presence of PTMs such as acetylation and glutamylation, which are found in stable, long-lived microtubules. The significance of the absence of detyrosinated microtubules in the MII-GV group remains to be determined Trial registration number not applicable


2018 ◽  
Vol 218 (2) ◽  
pp. 455-473 ◽  
Author(s):  
Cai Tong Ng ◽  
Li Deng ◽  
Chen Chen ◽  
Hong Hwa Lim ◽  
Jian Shi ◽  
...  

In dividing cells, depolymerizing spindle microtubules move chromosomes by pulling at their kinetochores. While kinetochore subcomplexes have been studied extensively in vitro, little is known about their in vivo structure and interactions with microtubules or their response to spindle damage. Here we combine electron cryotomography of serial cryosections with genetic and pharmacological perturbation to study the yeast chromosome segregation machinery in vivo. Each kinetochore microtubule has one (rarely, two) Dam1C/DASH outer kinetochore assemblies. Dam1C/DASH contacts the microtubule walls and does so with its flexible “bridges”; there are no contacts with the protofilaments’ curved tips. In metaphase, ∼40% of the Dam1C/DASH assemblies are complete rings; the rest are partial rings. Ring completeness and binding position along the microtubule are sensitive to kinetochore attachment and tension, respectively. Our study and those of others support a model in which each kinetochore must undergo cycles of conformational change to couple microtubule depolymerization to chromosome movement.


2021 ◽  
Author(s):  
Lara K. Krüger ◽  
Matthieu Gélin ◽  
Liang Ji ◽  
Carlos Kikuti ◽  
Anne Houdusse ◽  
...  

AbstractMitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in S. pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, to link the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.


2017 ◽  
Author(s):  
Alexandra F. Long ◽  
Dylan B. Udy ◽  
Sophie Dumont

SummaryThe kinetochore links chromosomes to dynamic spindle microtubules and drives both chromosome congression and segregation. To do so, the kinetochore must hold on to depolymerizing and polymerizing microtubules. At metaphase, one sister kinetochore couples to depolymerizing microtubules, pulling its sister along polymerizing microtubules [1,2]. Distinct kinetochore-microtubule interfaces mediate these behaviors: active interfaces transduce microtubule depolymerization into mechanical work, and passive interfaces generate friction as the kinetochore slides along microtubules [3,4]. We do not know the physical and molecular nature [5–7] of these interfaces, or how they are regulated to support diverse mitotic functions in mammalian cells. To address this question, we focus on the mechanical role of the essential load-bearing protein Hec1 [8–11]. Hec1’s affinity for microtubules is regulated by Aurora B phosphorylation on its N-terminal tail [12–15], but its role at the passive and active interfaces remains unclear. Here, we use laser ablation to trigger cellular pulling on mutant kinetochores and decouple sisters in vivo, and thereby separately probe Hec1’s role as it moves on polymerizing versus depolymerizing microtubules. We show that Hec1 phosphorylation tunes passive friction along polymerizing microtubules, modulating both the magnitude and timescale of responses to force. In contrast, we find that Hec1 phosphorylation does not affect the kinetochore’s ability to grip depolymerizing microtubules, or switch to this active force-generating state. Together, the data suggest that different kinetochore interfaces engage with growing and shrinking microtubules, and that passive friction can be regulated without disrupting active force generation. Through this mechanism, the kinetochore can modulate its grip on microtubules as its functional needs change during mitosis, and yet retain its ability to couple to microtubules powering chromosome movement.


2009 ◽  
Vol 20 (1) ◽  
pp. 410-418 ◽  
Author(s):  
Ulf R. Klein ◽  
Markus Haindl ◽  
Erich A. Nigg ◽  
Stefan Muller

The ubiquitin-like SUMO system controls cellular key functions, and several lines of evidence point to a critical role of SUMO for mitotic progression. However, in mammalian cells mitotic substrates of sumoylation and the regulatory components involved are not well defined. Here, we identify Borealin, a component of the chromosomal passenger complex (CPC), as a mitotic target of SUMO. The CPC, which additionally comprises INCENP, Survivin, and Aurora B, regulates key mitotic events, including chromosome congression, the spindle assembly checkpoint, and cytokinesis. We show that Borealin is preferentially modified by SUMO2/3 and demonstrate that the modification is dynamically regulated during mitotic progression, peaking in early mitosis. Intriguingly, the SUMO ligase RanBP2 interacts with the CPC, stimulates SUMO modification of Borealin in vitro, and is required for its modification in vivo. Moreover, the SUMO isopeptidase SENP3 is a specific interaction partner of Borealin and catalyzes the removal of SUMO2/3 from Borealin. These data thus delineate a mitotic SUMO2/3 conjugation–deconjugation cycle of Borealin and further assign a regulatory function of RanBP2 and SENP3 in the mitotic SUMO pathway.


Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 131-145
Author(s):  
Michelle Webb ◽  
Sarah K. Howlett ◽  
Bernard Maro

The cytoskeletal organization of the mouse egg changes during ageing in vivo and in vitro. The earliest change observed is the disappearance of the microfilament-rich area overlying the meiotic spindle. This is followed by the migration of the spindle towards the centre of the egg. Finally the spindle breaks down and the chromosomes are no longer organized on a metaphase plate. This spindle disruption may result from changes in the microtubule nucleating material found at the spindle poles and from an increase in the critical concentration for tubulin polymerization. It is possible to correlate the changes in the cytoskeletal organization of the egg occurring during ageing with the different types of parthenogenetic embryos obtained after ethanol activation. These observations strengthen the hypothesis that the actin-rich cortical area that overlies the meiotic spindle forms a domain to which the meiotic cleavage furrow is restricted and provides some insights into the mechanisms by which different types of parthenogenetic embryos are generated.


1993 ◽  
Vol 104 (4) ◽  
pp. 1175-1185 ◽  
Author(s):  
P. Buchenau ◽  
H. Saumweber ◽  
D.J. Arndt-Jovin

The regulation of DNA topology by topoisomerase II from Drosophila melanogaster has been studied extensively by biochemical methods but little is known about its roles in vivo. We have performed experiments on the inhibition of topoisomerase II in living Drosophila blastoderm embryos. We show that the enzymatic activity can be specifically disrupted by microinjection of antitopoisomerase II antibodies as well as the epipodophyllotoxin VM26, a known inhibitor of topoisomerase II in vitro. By labeling the chromatin of live embryos with tetramethylrhodamine-coupled histones, the effects of inhibition on nuclear morphology and behaviour was followed in vivo using confocal laser scanning microscopy. Both the antibodies and the drug prevented or hindered the segregation of chromatin daughter sets at the anaphase stage of mitosis. In addition, high concentrations of inhibitor interfered with the condensation of chromatin and its proper arrangement into the metaphase plate. The observed effects yielded non-functional nuclei, which were drawn into the inner yolk mass of the embryo. Concurrently, undamaged nuclei surrounding the affected region underwent compensatory division, leading to the restoration of the nuclear population, and thereby demonstrating the regulative capacity of Drosophila blastoderm embryos.


Sign in / Sign up

Export Citation Format

Share Document