scholarly journals Timely Septation Requires SNAD-dependent Spindle Pole Body Localization of the Septation Initiation Network Components in the Filamentous FungusAspergillus nidulans

2009 ◽  
Vol 20 (12) ◽  
pp. 2874-2884 ◽  
Author(s):  
Jung-Mi Kim ◽  
Cui Jing Tracy Zeng ◽  
Tania Nayak ◽  
Rongzhong Shao ◽  
An-Chi Huang ◽  
...  

In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization of the SIN proteins of SIDB and MOBA to the SPB. Another scaffold protein SEPK, whose localization at the SPB was dependent on SNAD, was also required for SIDB and MOBA localization to the SPB. In the absence of either SEPK or SNAD, SIDB/MOBA successfully localized to the septation site, indicating that their earlier localization at SPB was not essential for their later appearance at the division site. Unlike their functional counterparts in fission yeast, SEPK and SNAD were not required for vegetative growth but only for timely septation. Furthermore, down-regulation of negative regulators of the SIN suppressed the septation and conidiation phenotypes due to the loss of SNAD. Therefore, we conclude that SPB localization of SIN components is not essential for septation per se, but critical for septation to take place in a timely manner in A. nidulans.

1998 ◽  
Vol 111 (18) ◽  
pp. 2809-2818 ◽  
Author(s):  
S. Soues ◽  
I.R. Adams

The monoclonal antibody 78H6 recognises an 85 kDa component of the yeast spindle pole body. Here we identify and characterise this component as Spc72p, the product of YAL047C. The sequence of SPC72 contains potential coiled-coil domains; its overexpression induced formation of large polymers that were strictly localised at the outer plaque and at the bridge of the spindle pole body. Immunoelectron microscopy confirmed that Spc72p was a component of these polymers. SPC72 was found to be non-essential for cell growth, but its deletion resulted in abnormal spindle positioning, aberrant nuclear migration and defective mating capability. Precisely, deletion of SPC72 resulted in a decreased number of astral microtubules: early in the cell cycle only few were detectable, and these were unattached to the spindle pole body in small-budded cells. Later in the cell cycle few, if any, remained, and they were unable to align the spindle properly. We conclude that Spc72p is not absolutely required for nucleation per se, but is needed for normal abundance and stability of astral microtubules.


2014 ◽  
Vol 25 (15) ◽  
pp. 2250-2259 ◽  
Author(s):  
Nicole Rachfall ◽  
Alyssa E. Johnson ◽  
Sapna Mehta ◽  
Jun-Song Chen ◽  
Kathleen L. Gould

In Schizosaccharomyces pombe, late mitotic events are coordinated with cytokinesis by the septation initiation network (SIN), an essential spindle pole body (SPB)–associated kinase cascade, which controls the formation, maintenance, and constriction of the cytokinetic ring. It is not fully understood how SIN initiation is temporally regulated, but it depends on the activation of the GTPase Spg1, which is inhibited during interphase by the essential bipartite GTPase-activating protein Byr4-Cdc16. Cells are particularly sensitive to the modulation of Byr4, which undergoes cell cycle–dependent phosphorylation presumed to regulate its function. Polo-like kinase, which promotes SIN activation, is partially responsible for Byr4 phosphorylation. Here we show that Byr4 is also controlled by cyclin-dependent kinase (Cdk1)–mediated phosphorylation. A Cdk1 nonphosphorylatable Byr4 phosphomutant displays severe cell division defects, including the formation of elongated, multinucleate cells, failure to maintain the cytokinetic ring, and compromised SPB association of the SIN kinase Cdc7. Our analyses show that Cdk1-mediated phosphoregulation of Byr4 facilitates complete removal of Byr4 from metaphase SPBs in concert with Plo1, revealing an unexpected role for Cdk1 in promoting cytokinesis through activation of the SIN pathway.


2001 ◽  
Vol 11 (20) ◽  
pp. 1559-1568 ◽  
Author(s):  
Andrea Krapp ◽  
Susanne Schmidt ◽  
Elena Cano ◽  
Viesturs Simanis

2010 ◽  
Vol 21 (21) ◽  
pp. 3693-3707 ◽  
Author(s):  
Erin M. Mathieson ◽  
Yasuyuki Suda ◽  
Mark Nickas ◽  
Brian Snydsman ◽  
Trisha N. Davis ◽  
...  

During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.


1994 ◽  
Vol 125 (4) ◽  
pp. 853-866 ◽  
Author(s):  
M A Osborne ◽  
G Schlenstedt ◽  
T Jinks ◽  
P A Silver

The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB-associated proteins including Nufl/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled-coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function.


2000 ◽  
Vol 113 (3) ◽  
pp. 545-554 ◽  
Author(s):  
S. Ikemoto ◽  
T. Nakamura ◽  
M. Kubo ◽  
C. Shimoda

Spindle pole bodies in the fission yeast Schizosaccharomyces pombe are required during meiosis, not only for spindle formation but also for the assembly of forespore membranes. The spo15 mutant is defective in the formation of forespore membranes, which develop into spore envelopes. The spo15(+)gene encodes a protein with a predicted molecular mass of 223 kDa, containing potential coiled-coil regions. The spo15 gene disruptant was not lethal, but was defective in spore formation. Northern and western analyses indicated that spo15(+) was expressed not only in meiotic cells but also in vegetative cells. When the spo15-GFP fusion gene was expressed by the authentic spo15 promoter during vegetative growth and sporulation, the fusion protein colocalized with Sad1p, which is a component of spindle pole bodies. Meiotic divisions proceeded in spo15delta cells with kinetics similar to those in wild-type cells. In addition, the morphology of the mitotic and meiotic spindles and the nuclear segregation were normal in spo15delta. Intriguingly, transformation of spindle pole bodies from a punctate to a crescent form prior to forespore membrane formation was not observed in spo15delta cells. We conclude that Spo15p is associated with spindle pole bodies throughout the life cycle and plays an indispensable role in the initiation of spore membrane formation.


2018 ◽  
Vol 29 (18) ◽  
pp. 2176-2189 ◽  
Author(s):  
Christine M. Jones ◽  
Jun-Song Chen ◽  
Alyssa E. Johnson ◽  
Zachary C. Elmore ◽  
Sierra N. Cullati ◽  
...  

Chromosome segregation and cell division are coupled to prevent aneuploidy and cell death. In the fission yeast Schizosaccharomyces pombe, the septation initiation network (SIN) promotes cytokinesis, but upon mitotic checkpoint activation, the SIN is actively inhibited to prevent cytokinesis from occurring before chromosomes have safely segregated. SIN inhibition during the mitotic checkpoint is mediated by the E3 ubiquitin ligase Dma1. Dma1 binds to the CK1-phosphorylated SIN scaffold protein Sid4 at the spindle pole body (SPB), and ubiquitinates it. Sid4 ubiquitination antagonizes the SPB localization of the Pololike kinase Plo1, the major SIN activator, so that SIN signaling is delayed. How this checkpoint is silenced once spindle defects are resolved has not been clear. Here we establish that Dma1 transiently leaves SPBs during anaphase B due to extensive autoubiquitination. The SIN is required for Dma1 to return to SPBs later in anaphase. Blocking Dma1 removal from SPBs by permanently tethering it to Sid4 prevents SIN activation and cytokinesis. Therefore, controlling Dma1’s SPB dynamics in anaphase is an essential step in S. pombe cell division and the silencing of the Dma1-dependent mitotic checkpoint.


Sign in / Sign up

Export Citation Format

Share Document