scholarly journals Protein Kinase Cζ Regulates Cdk5/p25 Signaling during Myogenesis

2010 ◽  
Vol 21 (8) ◽  
pp. 1423-1434 ◽  
Author(s):  
Aurélie de Thonel ◽  
Saima E. Ferraris ◽  
Hanna-Mari Pallari ◽  
Susumu Y. Imanishi ◽  
Vitaly Kochin ◽  
...  

Atypical protein kinase Cζ (PKCζ) is emerging as a mediator of differentiation. Here, we describe a novel role for PKCζ in myogenic differentiation, demonstrating that PKCζ activity is indispensable for differentiation of both C2C12 and mouse primary myoblasts. PKCζ was found to be associated with and to regulate the Cdk5/p35 signaling complex, an essential factor for both neuronal and myogenic differentiation. Inhibition of PKCζ activity prevented both myotube formation and simultaneous reorganization of the nestin intermediate filament cytoskeleton, which is known to be regulated by Cdk5 during myogenesis. p35, the Cdk5 activator, was shown to be a specific phosphorylation target of PKCζ. PKCζ-mediated phosphorylation of Ser-33 on p35 promoted calpain-mediated cleavage of p35 to its more active and stable fragment, p25. Strikingly, both calpain activation and the calpain-mediated cleavage of p35 were shown to be PKCζ-dependent in differentiating myoblasts. Overall, our results identify PKCζ as a controller of myogenic differentiation by its regulation of the phosphorylation-dependent and calpain-mediated p35 cleavage, which is crucial for the amplification of the Cdk5 activity that is required during differentiation.

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Suresh Velnati ◽  
Sara Centonze ◽  
Federico Girivetto ◽  
Daniela Capello ◽  
Ricardo M. Biondi ◽  
...  

PKCζ and PKCι/λ form the atypical protein kinase C subgroup, characterised by a lack of regulation by calcium and the neutral lipid diacylglycerol. To better understand the regulation of these kinases, we systematically explored their interactions with various purified phospholipids using the lipid overlay assays, followed by kinase activity assays to evaluate the lipid effects on their enzymatic activity. We observed that both PKCζ and PKCι interact with phosphatidic acid and phosphatidylserine. Conversely, PKCι is unique in binding also to phosphatidylinositol-monophosphates (e.g., phosphatidylinositol 3-phosphate, 4-phosphate, and 5-phosphate). Moreover, we observed that phosphatidylinositol 4-phosphate specifically activates PKCι, while both isoforms are responsive to phosphatidic acid and phosphatidylserine. Overall, our results suggest that atypical Protein kinase C (PKC) localisation and activity are regulated by membrane lipids distinct from those involved in conventional PKCs and unveil a specific regulation of PKCι by phosphatidylinositol-monophosphates.


2015 ◽  
Vol 26 (20) ◽  
pp. 3578-3595 ◽  
Author(s):  
Andrew Archibald ◽  
Maia Al-Masri ◽  
Alyson Liew-Spilger ◽  
Luke McCaffrey

Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell–cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant.


2020 ◽  
Author(s):  
Dhananjay V. Deshmukh ◽  
Nils Pasquero ◽  
Gajraj Rathore ◽  
Joel Zvick ◽  
Ori Bar‐Nur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document